
XR:
Crossroads

Load Balancer and
Fail Over Utility

Karel Kubat
2008

This document is the introductory guide, the configuration guide and the installation guide to XR. XR is an

open source load balancer and fail over utility for TCP based services. It is a daemon running in user

space, and features extensive configurability, polling of back ends using wake up calls, status reporting,

many algorithms to select the 'right' back end for a request (and user-defined algorithms for very special

cases), and much more. XR is service-independent: it is usable for any TCP service, such as HTTP(S), SSH,

SMTP, database connections. In the case of HTTP balancing, XR can provide session stickiness for back end

processes that need sessions, but aren't session-aware of other back ends. XR can be run as a stand-alone

daemon, or via inetd.

1

Table of Contents
 Introduction...3

 Typical Usage of XR...3
 Nomenclature..3
 Reporting Bugs ..4
 Copyright and Disclaimer...4
 Technicalities...4

 Obtaining and Installing XR...6
 For the Fast and the Furious...6
 Pre-requisites..6

 Invoking XR..7
 Getting Help..7
 Specifying Back Ends..7
 Specifying the Server...7
 The Dispatching Algorithm...8
 External Dispatching Algorithms..8
 HTTP Protocol Goodies...9
 Timeouts...10
 Wake-up and check-up calls..10
 Protection Against Overloading..10
 IP-based Access Control...11
 Other Options...11

 Running XR...12
 Demo Mode..12
 Daemon Mode...12
 Inetd Mode..12
 Xinetd Mode...13
 Interpreting the Verbose Output..13
 Reporting and Stopping...14
 Restarting XR...15

 Scripting XR: xrctl..16
 Installing xrctl..16
 Configuring xrctl...16
 Using xrctl...17
 Configuration Changes..18

2

Introduction
XR is a load balancer and fail over utility. It is typically located between network clients and a
farm of servers, and dispatches client requests to servers in the farm so that processing load is
distributed. Furthermore, if a server is down, next requests are routed to other servers, so that
clients perceive no downtime.

Typical Usage of XR
Most often, XR is located on a separate server in a computing cluster, just in front of a farm of
back ends. The below figure shows three back end servers, labeled B1 to B3. The balancer is the
“entry point” as far as clients are concerned. The clients will typically access the cluster via a
network, e.g. the Internet.

As far as back end servers B1, B2 and B3 are concerned, XR is their “client” who initiates
contact. Towards the clients, XR acts as a “server”: it accepts their connections and makes sure
that they get handled. In this mode, XR doesn't know or care what type of network data is
passed; it simply shuttles bytes to and fro.

Alternatively, XR can be put into “HTTP mode”. XR then expects the “payload” to be HTTP
messages. This involves more processing: the messages are unpacked and examined. In HTTP
mode, XR can insert custom headers into the messages, thereby e.g. making sessions “sticky”,
which causes clients to be routed to always the same back end.

Performance Benchmark
The following table show the results of a short benchmark of the following conditions:

• An Apache web server on the local host was benchmarked, with XR running as an idle
process.

• Next, the same page was retrieved through XR running in TCP mode.

• After this, the same page was retrieved through XR running in HTTP mode.

• Finally, the HTTP balancer was put to more work by injecting X-Forwarded-For headers and
stickiness cookies into the network streams.

3

Condition Average time (sec) Percentage

Plain Apache 0.00388 100%

Apache over XR in TCP mode 0.00404 +4.1%

Apache over XR in HTTP mode 0.00449 +15.7%

Apache over XR in HTTP mode, with stream
modifications

0.00462 +19.1%

This benchmark is for a number of reasons the worst case for XR usage. For one, the client, the
balancer and the the back end were located on the same system. Normally, back ends will be on
different systems, and clients will be even further away – which means: longer network
latencies. XR's overhead is in those cases much smaller. Another reason is that this test involved
repetitively retrieving a static, very small HTML page (30 bytes), resulting in many short TCP
bursts. Normally, network connections will shuttle many more bytes, and will require more
server processing – so that XR's overhead will be relatively smaller.

Nomenclature
This document uses the following nomenclature:

• A client is any system that requests a network connection. It may be a browser, or any other
program.

• A back end (or worker) is any system to which XR can dispatch a client request.

• A connection is just a TCP network connection – between a client and XR, or between XR and
a back end. A session is a series of connections that form a 'logical' unit: XR supports sticky
sessions for the HTTP protocol, which means that all connections from one client are routed
to the same back end.

• XR uses a particular dispatching algorithm to determine which back end is best suited to
handle a client connection. Dispatching algorithms include round-robin (back ends take
turns), least-connections (the back end handling the least network connections is taken), and
first-available (the first back end that is available is used).

• XR maintains states of back ends. A state tells XR whether a back end is available, and how
many connections are currently active between XR and the back end. Balancing and fail-over
obviously depend on the state information.

• XR maintains states of back end availability based on TCP-availability: if a back end accepts
a network request, then it's live.

• Wake-up calls are periodically issued by XR to see whether unavailable back ends have come
alive yet. That way, an unavailable back end can be restarted, and XR will detect this.

• A daemon is a process that once it starts, remains running. Daemons are typically processes
that accept network connections – web servers, mail servers and the like. XR will typically
act as a daemon on the balancing server.

• Most often, XR is used to handle TCP connections, which are just network bytes shuttled to
and fro. In that case, XR doesn't know and doesn't care what the meaning is of the
transmitted data (technically, this is the OSI level 5 balancing). In the special case of web
service balancing, or HTTP, XR can be instructed to 'peek' inside the network data and to
modify it (technically, this is OSI level 7). The network data are referred to as the payload of
the connection.

4

Reporting Bugs
XR has been extensively tested. However, it's always possible that given a particular Unix flavor,
and given a specific network environment, XR shows bugs. In that case please report bugs as
follows:

• Determine your version of XR and the e-mail address of the maintainer using xr -V.

• Mail the maintainer with a detailed bug report. Include XR's version number, verbose output
of XR (collected with flags --verbose and --debug), and include the command line that
invoked XR.

Copyright and Disclaimer
Crossroads is distributed as-is, without assumptions of fitness or usability. You are free to use
crossroads to your liking. It’s free, and as with everything that’s free: there’s also no warranty.
Crossroads is distibuted under the GNU General Public Licence, version 3. See
http://crossroads.e-tunity.com for more information.

You are allowed to make modifications to the source code of crossroads, and you are allowed to
(re)distribute crossroads, as long as you include this text, all sources, and if applicable: all your
modifications, with each distribution. While you are allowed to make any and all changes to the
sources, I would appreciate hearing about them. If the changes concern new functionality or bug
fixes, then I’ll include them in a next release, stating full credits. If you want to seriously
contribute (to which you are heartily encouraged), then mail me and I’ll get you access to the
code repository.

Technicalities
XR is a single-process multi-threaded deamon, running in user space.

The fact that XR is a multi-threaded means that once started, it hardly imposes extra
requirements to the memory of the server. All actions are handled in one program image using
several threads. XR however does impose requirements on CPU power: each action (client
request) means processing. The processing load is not only for XR; each network request also
imposes load on the kernel.

Practically however, XR performs just as well and as fast as e.g. Linux LVS (Virtual Server), a
kernel-based approach that forwards TCP packets. Benchmarking shows that XR performs very
well, and thanks to the fact that it's “just another user-land program”, it's extensible, scriptable
and configurable.

XR is the next-generation program to crossroads version 1.80, which performs the same actions,
but which is a forking daemon written in C (as opposed to XR which is written in C++). Also, XR
uses command line options (as opposed to a configuration file, which crossroads 1.80 used). My
design decisions for XR were the following:

• For improved performance, XR uses threads instead of forks to handle client request.

• Given the need for a memory-leak-free approach in a threaded program, I chose C++ above
C.

• Based on my experiences with crossroads, I decided that configuration file handling, a
separate parser etc., only “bloats”. All can also be specified via the command line, and
that's what XR does.

• Similarly, XR doesn't support command line options like start or stop (which crossroads
requires). Such actions are easily scriptable, and hence, can be kept out of XR's code base.

Overall, XR is the “lean and mean” replacement for its predecessor crossroads – optimized for

5

http://crossroads.e-tunity.com/
http://crossroads.e-tunity.com/
http://crossroads.e-tunity.com/

speed and efficiency. I [KK] hope you like XR.

6

Obtaining and Installing XR

For the Fast and the Furious
• Get XR from http://crossroads.e-tunity.com/

• XR ships as an archive, named xr-X.YY.tar.gz, where X.YY is a version ID.

• Unpack the archive in a sources directory, e.g., /usr/local/src/

• Change-dir into the created directory /usr/local/src/xr-X.YY/

• Type make install, this compiles XR and installs it into /usr/sbin/

• Fire up XR by e.g.:
 xr --verbose --server tcp:0:80 \
 --backend 10.1.1.1:80 --backend 10.1.1.2:80 --backend 10.1.1.3:80
This instructs XR to listen to port 80 and to dispatch traffic to the servers 10.1.1.1, 10.1.1.2
and 10.1.1.2, port 80.

• Direct your browser to the server running XR. You will see the pages served by one of the
three back ends. The console where XR is started, will show what's going on (due to the
presence of --verbose).

• For a status report, issue killall -1 xr. The console where XR was started, will show which
back ends are active, how many bytes were transferred, etc..

• Instead of starting XR by hand, copy the control-script xrctl to a directory of your choice,
e.g. /usr/sbin. Edit xrctl and configure your service(s) at the top. Then type xrctl start to
start all your services, or xrctl stop to stop them.

Pre-requisites
XR runs best on a POSIX-compliant Unix system, such as Linux, MacOSX, Solaris. To compile XR, a
C++ compiler and GNU Make are needed. Also, the system must be equipped with standard C
libraries supporting networking, threading etc. (but that's covered in POSIX-compliancy).

A Linux, MacOSX or Solaris platform equipped with gcc/g++ 4 or better will do nicely.

7

http://crossroads.e-tunity.com/
http://crossroads.e-tunity.com/
http://crossroads.e-tunity.com/

Invoking XR
The most minimal invocation of XR is to use one option, -b or --backend to specify a back end, as
in:

xr -b 10.1.1.1:80

This starts up XR to listen to the default port (10000) and to dispatch traffic to just one back
end, located at the IP address 10.1.1.1, on port 80. Alternatively, one might use the form

xr –-backend 10.1.1.1:80

All options in XR have a short form and a long form, e.g, -b and –-backend perform identical
functions. It's a matter of personal preference whether one likes the shorthand or the long form.
In the remainder of this chapter, mostly the shorthand is used.

Getting Help
The command line

xr -h

shows all flags and options and can be used for a quick overview of what's possible.

Specifying Back Ends
Flag -b must be used at least once to specify a back end. When multiple back end specifications
are used, then XR will of course distribute the load over all back ends.

Example: xr -b 10.1.1.1:80 -b 10.1.1.2:80 -b 10.1.1.3:80

This defines three back ends.

Following the port specification, an optional number can be given, separated by a colon (:).
When present, this is the maximum number of simultaneously allowed connections to the back
end.

Example: xr -b 10.1.1.1:80:100 -b 10.1.1.2:80:100 -b 10.1.1.3:80:100

This defines three back ends. XR will dispatch up to 100 simultaneous connections to each back
end; therefore, when all three back ends are available, XR will be allowed to service up to 300
clients. The next client will not be accepted. When only two back ends are available, XR will
service up to 200 clients.

Another useful example is the following. Imagine a farm of Windows systems, to which XR
dispatches Remote Desktop (RDP) connections. RDP servers on Windows can handle one user
session; a new one would log out the existing session. In this case, the command:

xr -b 10.1.1.1:3389:1 -b 10.1.1.2:3389:1 -b 10.1.1.3:3389:1

would instruct XR to dispatch to three back ends, but to allow only one concurrent connection.

Specifying the Server
Towards the clients, XR acts as a server. The default is:

• A TCP server,

• Accepting connections on all interfaces (hence, on all IP addresses of the server where XR is
running),

• Listening to port 10000.

8

Using the flag -s the server mode can be configured. Flag -s always has an argument with three
parts, separated by a colon (:). The parts are:

• The server type: tcp or http. When the type is http, then XR can inject headers into HTTP
streams, thereby enforcing e.g. “sticky” sessions.

• The IP address to bind to. Value 0 specifies all addresses, and e.g. value 127.0.0.1 specifies
localhost-only. In that case external requests would not be serviced.

• The port specifies the listening port. The special value 0 means that XR will “listen” to the
standard input stream (stdin) – which is typically used in inetd-style starting.

Example: xr -b 10.1.1.1:80 -b 10.1.1.2:80 -b 10.1.1.3:80 -s tcp:0:80

The server listens to all interfaces on port 80 and dispatches requests to three back ends. This
would typically be a webserver balancer.

The Dispatching Algorithm
Once a client connection is seen, XR decides which back end is best suited to handle the
request. This is the dispatching algorithm. The default algorithm is: use the back end which is
handling the least number of concurrent connections.

Using the flag -d the algorithm is set. The following settings are available:

• -dl or -d least-connections selects the least-connections algorithm (the default)

• -dr or -d round-robin selects round-robin dispatching, back ends take turns

• -df or -d first-available selects first-available dispatching, the first available back end is
taken (in order of command line specification using flag -b).

• -de:EXT or -d external:EXT relies on an external program EXT to supply the best back end.
The external program must be user-supplied, and is meant as a fallback for situations where
other dispatching algorithms do not suffice.

External Dispatching Algorithms
External dispatching algorithms should be only used when XR's built-ins do not suffice. When XR
uses an external algorithm, then the calling of an external program will have negative impact on
the performance.

When specified, XR calls the external algorithm handler using the following arguments:

• The first argument is the number of back end specifications to expect in the remainder of
the command line.

• The next arguments are combo's of the back end address, its availablity, and the current
number of connections. These three arguments are repeated for as many back ends as there
are. Each combo consists of:

• The back end address, e.g. 10.1.1.1:80

• The availability, available or unavailable

• The number of connections to that back end

For example, given the invocation:

xr -b 10.1.1.1:80 -b 10.1.1.2:80 -b 10.1.1.3:80 -de /where/ever/prog

the program prog might be invoked as follows:

/where/ever/prog 3 10.1.1.1:80 available 5 10.1.1.2:80 unavailable 0 10.1.1.2:80 available 4

9

This would signify that there are three back ends, of which the first one and last one are
available. The available back ends have resp. 5 and 4 active connections.

The external algorithm handler must reply by printing a number on its stdout. The number is a
zero-based index into the back end list (number 0 means: take the first back end in the list);
therefore, the number may not exceed the number of back ends minus one. XR will try to
connect to the indicated back end. E.g., if the above prog would reply 1, then XR would try to
connect to 10.1.1.2:80 – even when this back end was initially marked unavailable. It is the
external program's responsibility to make the right decision.

As an illustration, here is a Perl script that imitates XR's “first-available” dispatch algorithm. It is
meant only as an illustration: the built in algorithm is way faster. Note that the program may
print 'verbose' messages on stderr, but stdout is reserved for the back end number reply.

firstav.pl - sample "first available" dispatching algorithm,
implemented as an external Perl program

#!/usr/bin/perl

use strict;

print STDERR ("firstav.pl: Invocation: @ARGV\n");
my $n = shift (@ARGV);
for my $i (0..$n - 1) {
 my $addr = shift (@ARGV);
 my $av = shift (@ARGV);
 my $conn = shift (@ARGV);
 print STDERR ("firstav.pl: $i: backend at $addr, $av, $conn connections\n");
 if ($av eq 'available') {

print ("$i\n");
exit (0);

 }
}
print STDERR ("firstav.pl: Nothing available!\n");
exit (1);

HTTP Protocol Goodies
When XR is started in HTTP mode (i.e., using flag -s http:....), then the following flags will
instruct XR to inspect the payload and to modify it:

• Flag -S specifies “sticky” HTTP sessions. XR will inject cookies into the HTTP stream, so that
next requests from the same client are detected, and can be dispatched to the same back
end (provided that the back end is still available). Technically, XR injects or inspects cookies
with the name XRTarget.

• Flag -x adds X-Forwarded-For headers to back end bound HTTP messages. The value if the
header is set to the IP address of the calling client. That way the server may inspect this
header value and use it for e.g., logging, or IP-based access control.

• Flag -X adds a version ID header to client bound and back end bound messages. This is for
debugging.

• Flag -H adds custom headers to server-directed HTTP messages. E.g., when a back end is a
HTTP proxy that requires authorization, then using -H an authorization header can be
inserted.

The flags have no effect when the server type isn't http.

10

Timeouts
XR defines two timeout flags which, when in effect and exceeded, interrupt connections.

• -t NSEC is the timeout for back ends connections. When XR is trying to connect to a back
end, and this value is exceeded, then the connection is terminated, and the back end is
marked dead. In addition, in HTTP mode when XR is waiting for a back end's response, the
answer must come within the specified time. The default is 30 seconds.

• -T NSEC is the timeout for data transfers. The default is also 30 seconds. Within this period
clients must send data, or the connection is terminated.

Specific “fitting” timeouts must be used depending on the service that XR balances. E.g., the
default values are well suited for web server balancing: if a client holds still for 30 seconds, then
it's safe to assume that they're done.

In contrast, when XR is used to balance e.g. SSH sessions, then a much longer time out should be
used, otherwise XR will interrupt the session when the end-user doesn't type for 30 seconds. In
that case, -T 7200 (2 hours) may be more appropriate. Incidentally, this method can also be used
to enforce logout after a given time of inactivity. Or as yet another example, -T 0 would be
suited to balance database connections.

Summarizing, the timeout flags -t and -T influence XR as follows:

• Flag -T is always the longest “silence” period of clients. When clients do not send data
during the specified time, then the connection is terminated.

• Flag -t is always the maximum connection time to back ends. When a back end don't accept
requests from XR within the specified time, then the connection it terminated and the back
end is marked dead.

• In HTTP mode (i.e., when flag --server http:.... is in effect), flag -t is also the longest
“silence” period for server responses. When XR waits for a response from the back end, and
this period is exceeded, then XR interrupts the connection. The server is however not
marked dead; XR just assumes that it took too long to process the request.

Wake-up and check-up calls
XR supports the following methods to periodically check back ends:

• -c NSEC specifies that each NSEC seconds, XR should try to connect to each back end, to see
if the back end is still up. If the back end accepts connections, then XR marks it as “alive”.
Using this flag, simple TCP-style health checks are implemented. The default is 0, meaning
that check-up calls are suppressed.

• -w NSEC specifies that each NSEC seconds, XR should try to connect to each unavailable back
end (i.e., a back end previously marked as dead during a check-up or during dispatching).
The default is 5.

Theoretically both flags can be used simultaneously; e.g., it's possible to define check-up calls
each minute, with a wake-up call interval of 5 seconds.

Protection Against Overloading
Flag -m MAX can be used to define the maximum number of simultaneous connections that XR
may handle. E.g., when -m 300 is in effect, then XR will service up to 300 concurrent clients.
The next one won't be serviced.

This flag defines the maximum number of connections of XR as a whole. The back end specifier
-b.... also allows the specification of a maximum number of connections, but on a per back end

11

level.

IP-based Access Control
XR supports “allow” and “deny” lists using the flags -a (--allow-from) and -A (--deny-from). Both
flags take an IP address mask as argument in the “dotted-decimal” format, such as
192.168.1.255. The address byte 255 means that the mask allows for any value in the clients' IP
address in that position; e.g., 192.168.1.255 would allow 192.168.1.1, 192.168.1.2, and so on.

When access control lists for allowing and for denying are in place, then the allow-list is
evaluated first. If a client matches the list, then the deny list is evaluated. If the client does not
match the list, then it is serviced.

An allow list with the only value 127.0.0.1 (localhost) doesn't make much sense: instead, it
might be better to bind the server to the local network device, using e.g., --server
tcp:127.0.0.1:80.

Some combinations of allow-lists and deny-list may not make sense. E.g., the following
invocation:

xr -a 192.168.255.255 -A 192.255.255.255

makes no sense. First, all connections from 192.168.*.* are allowed, but then all connections
from 192.*.*.* are denied. This closes the balancer to all clients.

Other Options
XR supports a plethora of other options than mentioned above. E.g., flag -v turns on “verbose”
mode. Flag -p writes XR's process ID (PID) to a file, for inspection by scripts. For other options,
please try xr -h which generates an overview. This help text shows all options and their defaults,
and may be more up to date than this documentation.

12

Running XR
The basic operation of XR is that it listens to a file descriptor (either a network socket or stdin),
until activity is detected. Once a request from a client is seen, it is dispatched to a back end.

Errors and reporting messages are always reported to stderr, prefixed by ERROR or REPORT.
When flag -v is in effect, then messages about new connections etc. are also sent to stderr,
prefixed by INFO. For debugging there is also a flag -D. When in effect, debugging messages are
sent to stderr, prefixed by DEBUG.

XR does not daemonize by itself – i.e., it doesn't “go into the back ground”. It is the job of the
invoker to make sure that this happens (if it's requested). Such actions are easily scriptable.

Demo Mode
Given three webservers at 10.1.1.1, 10.1.1.2 and 10.1.1.3, the following command can be used
to balance traffic on port 80 in a “demo mode”:

xr -v s tcp:0:80 -b 10.1.1.1:80 -b 10.1.1.2:80 -b 10.1.1.3:80

Because flag -v is in effect, the terminal where XR is started will show messages about XR's
activity. XR can then be shutdown by pressing ^C.

Daemon Mode
The standard program logger is a very useful tool that catches the output from an other
program, and sends it to a syslog-defined log file. To fire up XR in daemon mode, a command
such as the following one does the trick:

xr -v -s tcp:0:80 -b 10.1.1.1:80 -b 10.1.1.2:80 -b 10.1.1.3:80 2>&1 | logger -t xr-web &

The parts of the invocation are:

• xr -v -s tcp:0:80 -b 10.1.1.1:80 -b 10.1.1.2:80 -b 10.1.1.3:80 is the basic XR start up
command,

• The flag -v instructs XR to show what's going on (verbose mode),

• 2>&1 makes sure that stderr and stdout are combined;

• | logger makes sure that XR's combined output goes to logger,

• -t xr-web is an argument to logger which causes syslog-messages to be prefixed by “xr-web”,
for easier viewing in the log file,

• The final ampersand daemonizes the entire command.

If logger is unavailable, then the following command does the trick as well:

xr -s tcp:0:80 -b 10.1.1.1:80 -b 10.1.1.2:80 -b 10.1.1.3:80 2>&1 >> /var/log/xr-web.log

This simply directs all input to /var/log/xr-web.log.

Inetd Mode
To start XR via inetd, the invocation only changes in that the listen port is set to 0. In that case,
XR will assume that clients connect via stdin and stdout.

The procedure is as follows:

• In the file /etc/services a service is added to link XR with a given TCP port, say 80:
xr 80/tcp # Crossroads load balancer for web services

13

• A small intermediate script, say /usr/sbin/xr.sh is created, with the command line that
startx XR:
 /usr/sbin/xr -s tcp:0:0 -b 10.1.1.1:80 -b 10.1.1.2:80 -b 10.1.1.3:80
Note the usage of option -s tcp:0:0 where the “port number” 0 instructs XR to serve requests
on stdin. Having the intermediate script xr.sh is by no means necessary, but it does make it
easier to add back ends or other options to XR by simply editing the script.

• In the file /etc/inetd.conf the invocation is specified for service xr:
 xr stream tcp nowait root /usr/sbin/xr.sh xr.sh
This wil start XR as user root when inetd sees activity on port 10000. Note that instead of
root any other user is permitted.

• The program inetd is restarted (using e.g. killall -1 inetd).

Xinetd Mode
Xinetd is an inetd-replacement and uses separate configuration files for each service.

• In the file /etc/services a service is added to link XR with a given TCP port, say 80:
xr 80/tcp # Crossroads load balancer for web services

• A small intermediate script, say /usr/sbin/xr.sh is created, with the command line that
startx XR:
 /usr/sbin/xr -s tcp:0:0 -b 10.1.1.1:80 -b 10.1.1.2:80 -b 10.1.1.3:80
Note the usage of option -s tcp:0:0 where the “port number” 0 instructs XR to serve requests
on stdin.

• In the directory /etc/xinetd.conf a new file is created named xr and having the following
contents:
service xr
{
 socket_type = stream
 protocol = tcp
 wait = no
 user = root
 server = /usr/sbin/xr.sh
}
Instead of root another user can be specified.

• The program xinetd is restarted using killall -1 xinetd

Interpreting the Verbose Output
When XR is started with the flag -v, then informational messages are printed to stderr.
Depending on the invoking command line, these messages will go to syslog, a private log file, the
console, or similar.

XR always prefixes the messages by a thread ID and by the word INFO. The thread ID is shown to
distinguish messages from each other when several threads are running. E.g., here's an example:
0xa00fafa0 INFO: Invoking command line: xr/build/xr --backend server1:22 --
backend server2:22 --backend server3:22 --verbose --server tcp:0:2222
0xa00fafa0 INFO: XR running as PID 90112
0xa00fafa0 INFO: TCP server for balancer listening to 0.0.0.0:2222
0xa00fafa0 INFO: Initial backend state: server1:22 is available
0xa00fafa0 INFO: Initial backend state: server2:22 is available
0xa00fafa0 INFO: Initial backend state: server3:22 is available
0xa00fafa0 INFO: Starting wakeup thread.
0xa00fafa0 INFO: Awaiting activity on fd 4
0xa00fafa0 INFO: Accepted connection from 127.0.0.1 as client fd 5

14

0xa00fafa0 INFO: Current back end states:
0xa00fafa0 INFO: Back end server1:22: 0 connections, status available
0xa00fafa0 INFO: Balancer is serving 0 clients
0xa00fafa0 INFO: Back end server2:22: 0 connections, status available
0xa00fafa0 INFO: Balancer is serving 0 clients
0xa00fafa0 INFO: Back end server3:22: 0 connections, status available
0xa00fafa0 INFO: Balancer is serving 0 clients
0xb0103000 INFO: Dispatch request for client fd 5
0xb0103000 INFO: Dispatching client to back end 0 server1:22
0xb0103000 INFO: Dispatching client fd 5 to server1:22, fd 5
0xa00fafa0 INFO: Accepted connection from 127.0.0.1 as client fd 8
0xa00fafa0 INFO: Current back end states:
0xa00fafa0 INFO: Back end server1:22: 1 connections, status available
0xa00fafa0 INFO: Balancer is serving 1 clients
0xa00fafa0 INFO: Back end server2:22: 0 connections, status available
0xa00fafa0 INFO: Balancer is serving 1 clients
0xa00fafa0 INFO: Back end server3:22: 0 connections, status available
0xa00fafa0 INFO: Balancer is serving 1 clients
0xb0185000 INFO: Dispatch request for client fd 8
0xb0185000 INFO: Dispatching client to back end 1 server2:22
0xb0185000 INFO: Dispatching client fd 8 to server2:22, fd 5
0xb0185000 INFO: Done dispatching client fd 8 at server2:22

Most messages are prefixed with 0xa00fafa. This is the “main thread”, which also shows the
invocation command line. At some point a client request is picked up as file descriptor 5, and
handled by thread 0xb013000. Later on, a second client request is picked up as file descriptor 8,
and handled by thread 0xb01185000.

The numbers are irrelevant, except that they are used to distinguish the separate threads.

Reporting and Stopping
The following signals are interpreted by XR:

Signal 1 (SIGHUP) causes XR to report its status on stderr. Depending on the invocation this will
go to syslog, the console, or a separate log file.

Below is a sample of such a report, generated using killall -1 xr:
0xa00fafa0 REPORT: *** XR STATUS REPORT STARTS ***
0xa00fafa0 REPORT: Back end localhost:22:
0xa00fafa0 REPORT: Status: available, alive
0xa00fafa0 REPORT: Connections: 1 (max 0)
0xa00fafa0 REPORT: Served: 15938 bytes, 2 clients
0xa00fafa0 REPORT: Back end 127.0.0.1:22:
0xa00fafa0 REPORT: Status: available, alive
0xa00fafa0 REPORT: Connections: 1 (max 0)
0xa00fafa0 REPORT: Served: 6529 bytes, 1 clients
0xa00fafa0 REPORT: *** XR STATUS REPORT ENDS ***

This report shows that XR knows two back ends, at localhost:22 and on 127.0.0.1:22. The report
shows that both back ends are available and alive:

• Alive means that the back end can be reached; i.e., that it responds to network requests. In
the above example both reports are alive.

• Available means that the back end is alive, and that a restriction of a maximum number of
connections has not been reached. In the above example both back ends have no connections
limit (indicated by “max 0”), and hence they are also available whenever they are alive.

The report furthermore shows how many bytes each back end has handled, and how many
clients were served.

All other signals request the termination of XR's balancing. XR will stop accepting connections,

15

and will wait until all clients have been served, and will then exit.

Restarting XR
In non-production environments, it may suffice to stop XR and to type in a command line to start
it again using other options (e.g., with more back ends). In production environments however,
stopping the balancer means not accepting client requests until a new XR is started – which in
turn means a short black out. For obvious reasons this isn't desirable.

XR doesn't allow restarting in the sense that the main server is kept alive, while it re-reads its
configuration (there are technical reasons for this fact). However, avoiding black outs is easily
achieved using the fact that when XR is stopped, underway requests are served, while the
listening port is freed up – so that immediately an other XR can be started.

E.g., imagine that an XR instance is running, invoked by the following command line and
dispatching to two back ends:

xr --server http:0:80 --backend 10.1.1.1:80 --backend 10.1.1.2:80

Now a third back end at 10.1.1.3:80 must be added, while avoiding a black out. This can be
achieved using the command line:

killall xr; \
xr --server http:0:80 --backend 10.1.1.1:80 --backend 10.1.1.2:80 --backend 10.1.1.3:80

Following the killall command, the previous balancer is instructed to continue serving existing
connections. A new balancer is immediately started to serve new connections.

16

Scripting XR: xrctl
The distribution of XR also contains a Perl script called xrctl. This script can be the starting point
for scripting your own XR control scripts, or it can be configured and used as-is.

Installing xrctl
The script xrctl is by default not installed by the make process. The script must be manually
installed by, e.g., copying it to /usr/sbin/.

Configuring xrctl
Before using xrctl, the script must be opened using an editor and the configuration options (at
the top of the script) must be set. Relevant options are:

• $piddir is a directory where process ID stamp files are stored. Actions such as xrctl stop read
the process ID's. The default is /var/run.

• $pscmd is a “ps” command that outputs process ID's and commands. When xrctl fails to find
PID files, it reads the output of this command to find out under which process ID's XR is
running. The default is /bin/ps ax -o pid,command. This setting works for Linux and MacOSX.

• $use_logger indicates whether xrctl should use logger to send XR's output to syslog. The
default is 1. When $use_logger is zero, or when the program logger cannot be found, then
xrctl redirects XR's output to separate logs.

• $logdir is the directory where log files are stored. This value is only used when $use_logger is
0, or when logger is unavailable.

• $maxlogsize is the maximum log file size. When xrctl rotate is run, log files bigger than this
value are “rotated”.

• $log_history is the number of history logs to keep around. When rotating, log files are
renamed to file.0, the previous file.0 to file.1 and so on. The last kept file is indicated by
$log_history.

• $bindirs is an array of directories where executable programs are searched. xrctl thus tries
to find XR itself and the programs “logger”, “bzip2”, “gzip”.

• %services is the definition of network services to balance. The details of this setting are
described below.

The hash %services defines how many, and which network services XR will balance. A separate XR
instance is invoked for each service, with the right flags --server, --backend and so on. The
structure is best shown by example. The following definition defines two entries, arbitrarily
named web and ssh. Per entry all relevant XR flags are given. Per flag zero, one or more values
are given (flags without options, such as --verbose have zero values).
my %services =
 (
 'web' =>
 { '--server' => [qw(http:0:80)],
 '--backend' => [qw(10.0.0.1:80 10.0.0.2:80 10.0.0.3:80)],
 '--verbose' => undef,
 '--add-x-forwarded-for'=> undef,
 },
 'ssh' =>
 { '--server' => [qw(tcp:0:22)],
 '--backend' => [qw(server1:22 server2:22 server3:22)],
 '--verbose' => undef,

17

 '--client-timeout' => [qw(7200)],
 },
);

The per-service options can be specified using the long flags (e.g. --server) or using the short
form (e.g. -s).

Using xrctl
Once xrctl is configured, services are started using xrctl start. Optionally, only a subset of all
configured services can be started. E.g., given the above configuration, xrctl start ssh would
only start the SSH balancer, not the web balancer. The same applies for most actions of xrctl:
when an extra argument is present, it denotes a specific service; while no argument means: all
services.

The actions of xrctl are:

• xrctl list: Lists which services are configured;

• xrctl start: Starts services;

• xrctl stop: Stops services;

• xrctl force: Forces services “up”: not yet started services are started;

• xrctl restart: Restarts services (useful for e.g. configuration changes);

• xrctl status: Shows which services are running and which not;

• xrctl rotate: Rotates log files (when xrctl logs to separate log files and not via logger).

When xrctl has started, then the following applies:

• XR processes are started, with process names that reflects the service. E.g., given the above
example two processes xr-web and xr-ssh are started. (Both are actually the binary xr, but
the distinct name is easier to find in the process list.)

• The process ID's of the service balancers can be found in /var/run/xr-web.pid and
/var/run/xr-ssh.pid (unless $piddir is configured as another directory than /var/run).

• When xrctl ends output to logger, then all verbose messages, errors or reports are collected
in /var/log/messages (or another syslog-file, depending on the Unix variant, e.g.,
/var/log/system.log under MacOSX).

• When xrctl sends output to private log files, then messages, errors and reports are collected
in /var/log/xr-web.log and /var/log/xr-ssh.log (unless $logdir is configured as another
directory than /var/log).

• To generate a back end report, the following actions are necessary:

• The service name must be known – and hence, the process name. E.g., for service ssh the
process name is xr-ssh.

• This process is sent a SIGHUP signal, using kilall -1 xr-ssh. Alternatively the process ID can
be looked up in /var/run/xr-ssh.pid, and kill -1 process-id can be used.

• The report is looked up in either the syslog file (e.g., /var/log/messages) or in xrctl's
own log /var/log/xr-ssh.log.

• Usually it's more practical to issue tail -f /var/log/messages or tail -f /var/log/xr-
ssh.log, and then to issue killall -1 xr-ssh.

18

Configuration Changes
When the configuration of an XR service must be changed, then xrctl can be used as follows. As
an example we assume that the above shown service web must be extended with a new back
end 10.0.0.4:80.

1. Using xrclt status web it is verified that the service is running. Xrctl should reply with:
Service web: running.

2. The script xrctl is edited, and the configuration of the service is modified. The relevant
section with an added back end should contain the line:
'--backend' => [qw(10.0.0.1:80 10.0.0.2:80 10.0.0.3:80 10.0.0.4:80)],

3. The service is restarted, using xrctl restart web.

19

