Search
j0ke.net Open Build Service
>
Projects
>
devel
:
tools
:
building
>
scons
> scons-user.html
Sign Up
|
Log In
Username
Password
Cancel
Overview
Repositories
Revisions
Requests
Users
Advanced
Attributes
Meta
File scons-user.html of Package scons
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN""http://www.w3.org/TR/html4/loose.dtd"> <HTML ><HEAD ><TITLE >SCons User Guide 1.0.1</TITLE ><META NAME="GENERATOR" CONTENT="Modular DocBook HTML Stylesheet Version 1.79"></HEAD ><BODY CLASS="book" BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#0000FF" VLINK="#840084" ALINK="#0000FF" ><DIV CLASS="BOOK" ><A NAME="AEN1" ></A ><DIV CLASS="TITLEPAGE" ><H1 CLASS="title" ><A NAME="AEN2" >SCons User Guide 1.0.1</A ></H1 ><H3 CLASS="author" ><A NAME="AEN4" ></A >Steven Knight</H3 ><P CLASS="copyright" >Copyright © 2004, 2005, 2006, 2007, 2008 Steven Knight</P ><DIV CLASS="legalnotice" ><P ></P ><A NAME="AEN12" ></A ><A NAME="AEN13" ></A ><BLOCKQUOTE CLASS="BLOCKQUOTE" ><P > SCons User's Guide Copyright (c) 2004, 2005, 2006, 2007 Steven Knight </P ></BLOCKQUOTE ><P ></P ></DIV ><HR></DIV ><DIV CLASS="TOC" ><DL ><DT ><B >Table of Contents</B ></DT ><DT ><A HREF="#chap-preface" >Preface</A ></DT ><DD ><DL ><DT >1. <A HREF="#AEN29" ><SPAN CLASS="application" >SCons</SPAN > Principles</A ></DT ><DT >2. <A HREF="#AEN54" >A Caveat About This Guide's Completeness</A ></DT ><DT >3. <A HREF="#AEN62" >Acknowledgements</A ></DT ><DT >4. <A HREF="#AEN83" >Contact</A ></DT ></DL ></DD ><DT >1. <A HREF="#chap-build-install" >Building and Installing <SPAN CLASS="application" >SCons</SPAN ></A ></DT ><DD ><DL ><DT >1.1. <A HREF="#AEN102" >Installing Python</A ></DT ><DT >1.2. <A HREF="#AEN124" >Installing <SPAN CLASS="application" >SCons</SPAN > From Pre-Built Packages</A ></DT ><DD ><DL ><DT >1.2.1. <A HREF="#AEN129" >Installing <SPAN CLASS="application" >SCons</SPAN > on Red Hat (and Other RPM-based) Linux Systems</A ></DT ><DT >1.2.2. <A HREF="#AEN149" >Installing <SPAN CLASS="application" >SCons</SPAN > on Debian Linux Systems</A ></DT ><DT >1.2.3. <A HREF="#AEN157" >Installing <SPAN CLASS="application" >SCons</SPAN > on Windows Systems</A ></DT ></DL ></DD ><DT >1.3. <A HREF="#AEN166" >Building and Installing <SPAN CLASS="application" >SCons</SPAN > on Any System</A ></DT ><DD ><DL ><DT >1.3.1. <A HREF="#AEN194" >Building and Installing Multiple Versions of <SPAN CLASS="application" >SCons</SPAN > Side-by-Side</A ></DT ><DT >1.3.2. <A HREF="#AEN218" >Installing <SPAN CLASS="application" >SCons</SPAN > in Other Locations</A ></DT ><DT >1.3.3. <A HREF="#AEN236" >Building and Installing <SPAN CLASS="application" >SCons</SPAN > Without Administrative Privileges</A ></DT ></DL ></DD ></DL ></DD ><DT >2. <A HREF="#chap-simple" >Simple Builds</A ></DT ><DD ><DL ><DT >2.1. <A HREF="#AEN256" >Building Simple C / C++ Programs</A ></DT ><DT >2.2. <A HREF="#AEN288" >Building Object Files</A ></DT ><DT >2.3. <A HREF="#AEN307" >Simple Java Builds</A ></DT ><DT >2.4. <A HREF="#AEN328" >Cleaning Up After a Build</A ></DT ><DT >2.5. <A HREF="#AEN348" >The <TT CLASS="filename" >SConstruct</TT > File</A ></DT ><DD ><DL ><DT >2.5.1. <A HREF="#AEN358" ><TT CLASS="filename" >SConstruct</TT > Files Are Python Scripts</A ></DT ><DT >2.5.2. <A HREF="#AEN370" ><SPAN CLASS="application" >SCons</SPAN > Functions Are Order-Independent</A ></DT ></DL ></DD ><DT >2.6. <A HREF="#AEN420" >Making the <SPAN CLASS="application" >SCons</SPAN > Output Less Verbose</A ></DT ></DL ></DD ><DT >3. <A HREF="#chap-less-simple" >Less Simple Things to Do With Builds</A ></DT ><DD ><DL ><DT >3.1. <A HREF="#AEN443" >Specifying the Name of the Target (Output) File</A ></DT ><DT >3.2. <A HREF="#AEN467" >Compiling Multiple Source Files</A ></DT ><DT >3.3. <A HREF="#AEN489" >Making a list of files with <CODE CLASS="function" >Glob</CODE ></A ></DT ><DT >3.4. <A HREF="#AEN508" >Specifying Single Files Vs. Lists of Files</A ></DT ><DT >3.5. <A HREF="#AEN526" >Making Lists of Files Easier to Read</A ></DT ><DT >3.6. <A HREF="#AEN552" >Keyword Arguments</A ></DT ><DT >3.7. <A HREF="#AEN563" >Compiling Multiple Programs</A ></DT ><DT >3.8. <A HREF="#AEN577" >Sharing Source Files Between Multiple Programs</A ></DT ></DL ></DD ><DT >4. <A HREF="#chap-libraries" >Building and Linking with Libraries</A ></DT ><DD ><DL ><DT >4.1. <A HREF="#AEN597" >Building Libraries</A ></DT ><DD ><DL ><DT >4.1.1. <A HREF="#AEN616" >Building Libraries From Source Code or Object Files</A ></DT ><DT >4.1.2. <A HREF="#AEN627" >Building Static Libraries Explicitly: the <CODE CLASS="function" >StaticLibrary</CODE > Builder</A ></DT ><DT >4.1.3. <A HREF="#AEN641" >Building Shared (DLL) Libraries: the <CODE CLASS="function" >SharedLibrary</CODE > Builder</A ></DT ></DL ></DD ><DT >4.2. <A HREF="#AEN658" >Linking with Libraries</A ></DT ><DT >4.3. <A HREF="#AEN685" >Finding Libraries: the <CODE CLASS="envar" >$LIBPATH</CODE > Construction Variable</A ></DT ></DL ></DD ><DT >5. <A HREF="#chap-nodes" >Node Objects</A ></DT ><DD ><DL ><DT >5.1. <A HREF="#AEN716" >Builder Methods Return Lists of Target Nodes</A ></DT ><DT >5.2. <A HREF="#AEN747" >Explicitly Creating File and Directory Nodes</A ></DT ><DT >5.3. <A HREF="#AEN767" >Printing <CODE CLASS="classname" >Node</CODE > File Names</A ></DT ><DT >5.4. <A HREF="#AEN779" >Using a <CODE CLASS="classname" >Node</CODE >'s File Name as a String</A ></DT ></DL ></DD ><DT >6. <A HREF="#chap-depends" >Dependencies</A ></DT ><DD ><DL ><DT >6.1. <A HREF="#AEN815" >Deciding When an Input File Has Changed: the <CODE CLASS="function" >Decider</CODE > Function</A ></DT ><DD ><DL ><DT >6.1.1. <A HREF="#AEN823" >Using MD5 Signatures to Decide if a File Has Changed</A ></DT ><DT >6.1.2. <A HREF="#AEN866" >Using Time Stamps to Decide If a File Has Changed</A ></DT ><DT >6.1.3. <A HREF="#AEN912" >Deciding If a File Has Changed Using Both MD Signatures and Time Stamps</A ></DT ><DT >6.1.4. <A HREF="#AEN937" >Writing Your Own Custom <CODE CLASS="function" >Decider</CODE > Function</A ></DT ><DT >6.1.5. <A HREF="#AEN977" >Mixing Different Ways of Deciding If a File Has Changed</A ></DT ></DL ></DD ><DT >6.2. <A HREF="#AEN994" >Older Functions for Deciding When an Input File Has Changed</A ></DT ><DD ><DL ><DT >6.2.1. <A HREF="#AEN999" >The <CODE CLASS="function" >SourceSignatures</CODE > Function</A ></DT ><DT >6.2.2. <A HREF="#AEN1011" >The <CODE CLASS="function" >TargetSignatures</CODE > Function</A ></DT ></DL ></DD ><DT >6.3. <A HREF="#AEN1056" >Implicit Dependencies: The <CODE CLASS="envar" >$CPPPATH</CODE > Construction Variable</A ></DT ><DT >6.4. <A HREF="#AEN1115" >Caching Implicit Dependencies</A ></DT ><DD ><DL ><DT >6.4.1. <A HREF="#AEN1154" >The <TT CLASS="literal" >--implicit-deps-changed</TT > Option</A ></DT ><DT >6.4.2. <A HREF="#AEN1166" >The <TT CLASS="literal" >--implicit-deps-unchanged</TT > Option</A ></DT ></DL ></DD ><DT >6.5. <A HREF="#AEN1179" >Explicit Dependencies: the <CODE CLASS="function" >Depends</CODE > Function</A ></DT ><DT >6.6. <A HREF="#AEN1198" >Dependencies From External Files: the <CODE CLASS="function" >ParseDepends</CODE > Function</A ></DT ><DT >6.7. <A HREF="#AEN1234" >Ignoring Dependencies: the <CODE CLASS="function" >Ignore</CODE > Function</A ></DT ><DT >6.8. <A HREF="#AEN1261" >Order-Only Dependencies: the <CODE CLASS="function" >Requires</CODE > Function</A ></DT ><DT >6.9. <A HREF="#AEN1312" >The <CODE CLASS="function" >AlwaysBuild</CODE > Function</A ></DT ></DL ></DD ><DT >7. <A HREF="#chap-environments" >Environments</A ></DT ><DD ><DL ><DT >7.1. <A HREF="#sect-external-environments" >Using Values From the External Environment</A ></DT ><DT >7.2. <A HREF="#sect-construction-environments" >Construction Environments</A ></DT ><DD ><DL ><DT >7.2.1. <A HREF="#AEN1400" >Creating a <TT CLASS="literal" >Construction Environment</TT >: the <CODE CLASS="function" >Environment</CODE > Function</A ></DT ><DT >7.2.2. <A HREF="#AEN1423" >Fetching Values From a <TT CLASS="literal" >Construction Environment</TT ></A ></DT ><DT >7.2.3. <A HREF="#AEN1446" >Expanding Values From a <TT CLASS="literal" >Construction Environment</TT >: the <CODE CLASS="function" >subst</CODE > Method</A ></DT ><DT >7.2.4. <A HREF="#AEN1479" >Controlling the Default <TT CLASS="literal" >Construction Environment</TT >: the <CODE CLASS="function" >DefaultEnvironment</CODE > Function</A ></DT ><DT >7.2.5. <A HREF="#AEN1510" >Multiple <TT CLASS="literal" >Construction Environments</TT ></A ></DT ><DT >7.2.6. <A HREF="#AEN1550" >Making Copies of <TT CLASS="literal" >Construction Environments</TT >: the <CODE CLASS="function" >Clone</CODE > Method</A ></DT ><DT >7.2.7. <A HREF="#AEN1571" >Replacing Values: the <CODE CLASS="function" >Replace</CODE > Method</A ></DT ><DT >7.2.8. <A HREF="#AEN1603" >Setting Values Only If They're Not Already Defined: the <CODE CLASS="function" >SetDefault</CODE > Method</A ></DT ><DT >7.2.9. <A HREF="#AEN1612" >Appending to the End of Values: the <CODE CLASS="function" >Append</CODE > Method</A ></DT ><DT >7.2.10. <A HREF="#AEN1632" >Appending Unique Values: the <CODE CLASS="function" >AppendUnique</CODE > Method</A ></DT ><DT >7.2.11. <A HREF="#AEN1642" >Appending to the Beginning of Values: the <CODE CLASS="function" >Prepend</CODE > Method</A ></DT ><DT >7.2.12. <A HREF="#AEN1663" >Prepending Unique Values: the <CODE CLASS="function" >PrependUnique</CODE > Method</A ></DT ></DL ></DD ><DT >7.3. <A HREF="#sect-execution-environments" >Controlling the Execution Environment for Issued Commands</A ></DT ><DD ><DL ><DT >7.3.1. <A HREF="#AEN1704" >Propagating <CODE CLASS="varname" >PATH</CODE > From the External Environment</A ></DT ><DT >7.3.2. <A HREF="#AEN1723" >Adding to <CODE CLASS="varname" >PATH</CODE > Values in the Execution Environment</A ></DT ></DL ></DD ></DL ></DD ><DT >8. <A HREF="#chap-mergeflags" >Merging Options into the Environment: the <CODE CLASS="function" >MergeFlags</CODE > Function</A ></DT ><DT >9. <A HREF="#chap-parseflags" >Separating Compile Arguments into their Variables: the <CODE CLASS="function" >ParseFlags</CODE > Function</A ></DT ><DT >10. <A HREF="#chap-parseconfig" >Finding Installed Library Information: the <CODE CLASS="function" >ParseConfig</CODE > Function</A ></DT ><DT >11. <A HREF="#chap-output" >Controlling Build Output</A ></DT ><DD ><DL ><DT >11.1. <A HREF="#AEN1846" >Providing Build Help: the <CODE CLASS="function" >Help</CODE > Function</A ></DT ><DT >11.2. <A HREF="#AEN1884" >Controlling How <SPAN CLASS="application" >SCons</SPAN > Prints Build Commands: the <CODE CLASS="envar" >$*COMSTR</CODE > Variables</A ></DT ><DT >11.3. <A HREF="#AEN1921" >Providing Build Progress Output: the <CODE CLASS="function" >Progress</CODE > Function</A ></DT ><DT >11.4. <A HREF="#AEN1977" >Printing Detailed Build Status: the <CODE CLASS="function" >GetBuildFailures</CODE > Function</A ></DT ></DL ></DD ><DT >12. <A HREF="#chap-command-line" >Controlling a Build From the Command Line</A ></DT ><DD ><DL ><DT >12.1. <A HREF="#sect-command-line-options" >Command-Line Options</A ></DT ><DD ><DL ><DT >12.1.1. <A HREF="#AEN2048" >Not Having to Specify Command-Line Options Each Time: the <CODE CLASS="varname" >SCONSFLAGS</CODE > Environment Variable</A ></DT ><DT >12.1.2. <A HREF="#AEN2074" >Getting Values Set by Command-Line Options: the <CODE CLASS="function" >GetOption</CODE > Function</A ></DT ><DT >12.1.3. <A HREF="#AEN2099" >Setting Values of Command-Line Options: the <CODE CLASS="function" >SetOption</CODE > Function</A ></DT ><DT >12.1.4. <A HREF="#sect-command-line-option-strings" >Strings for Getting or Setting Values of <SPAN CLASS="application" >SCons</SPAN > Command-Line Options</A ></DT ><DT >12.1.5. <A HREF="#AEN2327" >Adding Custom Command-Line Options: the <CODE CLASS="function" >AddOption</CODE > Function</A ></DT ></DL ></DD ><DT >12.2. <A HREF="#sect-command-line-variables" >Command-Line <CODE CLASS="varname" >variable</CODE >=<CODE CLASS="varname" >value</CODE > Build Variables</A ></DT ><DD ><DL ><DT >12.2.1. <A HREF="#AEN2420" >Controlling Command-Line Build Variables</A ></DT ><DT >12.2.2. <A HREF="#AEN2456" >Providing Help for Command-Line Build Variables</A ></DT ><DT >12.2.3. <A HREF="#AEN2471" >Reading Build Variables From a File</A ></DT ><DT >12.2.4. <A HREF="#AEN2491" >Pre-Defined Build Variable Functions</A ></DT ><DT >12.2.5. <A HREF="#AEN2677" >Adding Multiple Command-Line Build Variables at Once</A ></DT ><DT >12.2.6. <A HREF="#AEN2687" >Handling Unknown Command-Line Build Variables: the <CODE CLASS="function" >UnknownVariables</CODE > Function</A ></DT ></DL ></DD ><DT >12.3. <A HREF="#sect-command-line-targets" >Command-Line Targets</A ></DT ><DD ><DL ><DT >12.3.1. <A HREF="#AEN2722" >Fetching Command-Line Targets: the <CODE CLASS="varname" >COMMAND_LINE_TARGETS</CODE > Variable</A ></DT ><DT >12.3.2. <A HREF="#AEN2739" >Controlling the Default Targets: the <CODE CLASS="function" >Default</CODE > Function</A ></DT ><DT >12.3.3. <A HREF="#AEN2822" >Fetching the List of Build Targets, Regardless of Origin: the <CODE CLASS="varname" >BUILD_TARGETS</CODE > Variable</A ></DT ></DL ></DD ></DL ></DD ><DT >13. <A HREF="#chap-install" >Installing Files in Other Directories: the <CODE CLASS="function" >Install</CODE > Builder</A ></DT ><DD ><DL ><DT >13.1. <A HREF="#AEN2869" >Installing Multiple Files in a Directory</A ></DT ><DT >13.2. <A HREF="#AEN2879" >Installing a File Under a Different Name</A ></DT ><DT >13.3. <A HREF="#AEN2890" >Installing Multiple Files Under Different Names</A ></DT ></DL ></DD ><DT >14. <A HREF="#chap-factories" >Platform-Independent File System Manipulation</A ></DT ><DD ><DL ><DT >14.1. <A HREF="#AEN2906" >Copying Files or Directories: The <CODE CLASS="function" >Copy</CODE > Factory</A ></DT ><DT >14.2. <A HREF="#AEN2940" >Deleting Files or Directories: The <CODE CLASS="function" >Delete</CODE > Factory</A ></DT ><DT >14.3. <A HREF="#AEN2969" >Moving (Renaming) Files or Directories: The <CODE CLASS="function" >Move</CODE > Factory</A ></DT ><DT >14.4. <A HREF="#AEN2978" >Updating the Modification Time of a File: The <CODE CLASS="function" >Touch</CODE > Factory</A ></DT ><DT >14.5. <A HREF="#AEN2987" >Creating a Directory: The <CODE CLASS="function" >Mkdir</CODE > Factory</A ></DT ><DT >14.6. <A HREF="#AEN2996" >Changing File or Directory Permissions: The <CODE CLASS="function" >Chmod</CODE > Factory</A ></DT ><DT >14.7. <A HREF="#AEN3005" >Executing an action immediately: the <CODE CLASS="function" >Execute</CODE > Function</A ></DT ></DL ></DD ><DT >15. <A HREF="#chap-file-removal" >Controlling Removal of Targets</A ></DT ><DD ><DL ><DT >15.1. <A HREF="#AEN3044" >Preventing target removal during build: the <CODE CLASS="function" >Precious</CODE > Function</A ></DT ><DT >15.2. <A HREF="#AEN3060" >Preventing target removal during clean: the <CODE CLASS="function" >NoClean</CODE > Function</A ></DT ><DT >15.3. <A HREF="#AEN3074" >Removing additional files during clean: the <CODE CLASS="function" >Clean</CODE > Function</A ></DT ></DL ></DD ><DT >16. <A HREF="#chap-hierarchical" >Hierarchical Builds</A ></DT ><DD ><DL ><DT >16.1. <A HREF="#AEN3101" ><TT CLASS="filename" >SConscript</TT > Files</A ></DT ><DT >16.2. <A HREF="#AEN3129" >Path Names Are Relative to the <TT CLASS="filename" >SConscript</TT > Directory</A ></DT ><DT >16.3. <A HREF="#AEN3155" >Top-Level Path Names in Subsidiary <TT CLASS="filename" >SConscript</TT > Files</A ></DT ><DT >16.4. <A HREF="#AEN3176" >Absolute Path Names</A ></DT ><DT >16.5. <A HREF="#AEN3186" >Sharing Environments (and Other Variables) Between <TT CLASS="filename" >SConscript</TT > Files</A ></DT ><DD ><DL ><DT >16.5.1. <A HREF="#AEN3198" >Exporting Variables</A ></DT ><DT >16.5.2. <A HREF="#AEN3226" >Importing Variables</A ></DT ><DT >16.5.3. <A HREF="#AEN3249" >Returning Values From an <TT CLASS="filename" >SConscript</TT > File</A ></DT ></DL ></DD ></DL ></DD ><DT >17. <A HREF="#chap-separate" >Separating Source and Build Directories</A ></DT ><DD ><DL ><DT >17.1. <A HREF="#AEN3283" >Specifying a Variant Directory Tree as Part of an <TT CLASS="filename" >SConscript</TT > Call</A ></DT ><DT >17.2. <A HREF="#AEN3313" >Why <SPAN CLASS="application" >SCons</SPAN > Duplicates Source Files in a Variant Directory Tree</A ></DT ><DT >17.3. <A HREF="#AEN3330" >Telling <SPAN CLASS="application" >SCons</SPAN > to Not Duplicate Source Files in the Variant Directory Tree</A ></DT ><DT >17.4. <A HREF="#AEN3346" >The <CODE CLASS="function" >VariantDir</CODE > Function</A ></DT ><DT >17.5. <A HREF="#AEN3375" >Using <CODE CLASS="function" >VariantDir</CODE > With an <TT CLASS="filename" >SConscript</TT > File</A ></DT ><DT >17.6. <A HREF="#AEN3394" >Using <CODE CLASS="function" >Glob</CODE > with <CODE CLASS="function" >VariantDir</CODE ></A ></DT ></DL ></DD ><DT >18. <A HREF="#chap-variants" >Variant Builds</A ></DT ><DT >19. <A HREF="#chap-builders-writing" >Writing Your Own Builders</A ></DT ><DD ><DL ><DT >19.1. <A HREF="#AEN3438" >Writing Builders That Execute External Commands</A ></DT ><DT >19.2. <A HREF="#AEN3447" >Attaching a Builder to a <TT CLASS="literal" >Construction Environment</TT ></A ></DT ><DT >19.3. <A HREF="#AEN3503" >Letting <SPAN CLASS="application" >SCons</SPAN > Handle The File Suffixes</A ></DT ><DT >19.4. <A HREF="#AEN3524" >Builders That Execute Python Functions</A ></DT ><DT >19.5. <A HREF="#AEN3560" >Builders That Create Actions Using a <TT CLASS="literal" >Generator</TT ></A ></DT ><DT >19.6. <A HREF="#AEN3603" >Builders That Modify the Target or Source Lists Using an <TT CLASS="literal" >Emitter</TT ></A ></DT ><DT >19.7. <A HREF="#AEN3627" >Where To Put Your Custom Builders and Tools</A ></DT ></DL ></DD ><DT >20. <A HREF="#chap-builders-commands" >Not Writing a Builder: the <CODE CLASS="function" >Command</CODE > Builder</A ></DT ><DT >21. <A HREF="#chap-add-method" >Pseudo-Builders: the AddMethod function</A ></DT ><DT >22. <A HREF="#chap-scanners" >Writing Scanners</A ></DT ><DD ><DL ><DT >22.1. <A HREF="#AEN3743" >A Simple Scanner Example</A ></DT ></DL ></DD ><DT >23. <A HREF="#chap-repositories" >Building From Code Repositories</A ></DT ><DD ><DL ><DT >23.1. <A HREF="#AEN3794" >The <CODE CLASS="function" >Repository</CODE > Method</A ></DT ><DT >23.2. <A HREF="#AEN3805" >Finding source files in repositories</A ></DT ><DT >23.3. <A HREF="#AEN3837" >Finding <TT CLASS="literal" >#include</TT > files in repositories</A ></DT ><DD ><DL ><DT >23.3.1. <A HREF="#AEN3878" >Limitations on <TT CLASS="literal" >#include</TT > files in repositories</A ></DT ></DL ></DD ><DT >23.4. <A HREF="#AEN3919" >Finding the <TT CLASS="filename" >SConstruct</TT > file in repositories</A ></DT ><DT >23.5. <A HREF="#AEN3937" >Finding derived files in repositories</A ></DT ><DT >23.6. <A HREF="#AEN3966" >Guaranteeing local copies of files</A ></DT ></DL ></DD ><DT >24. <A HREF="#chap-sconf" >Multi-Platform Configuration (<SPAN CLASS="application" >Autoconf</SPAN > Functionality)</A ></DT ><DD ><DL ><DT >24.1. <A HREF="#AEN4000" ><TT CLASS="literal" >Configure Contexts</TT ></A ></DT ><DT >24.2. <A HREF="#AEN4016" >Checking for the Existence of Header Files</A ></DT ><DT >24.3. <A HREF="#AEN4025" >Checking for the Availability of a Function</A ></DT ><DT >24.4. <A HREF="#AEN4030" >Checking for the Availability of a Library</A ></DT ><DT >24.5. <A HREF="#AEN4045" >Checking for the Availability of a <TT CLASS="literal" >typedef</TT ></A ></DT ><DT >24.6. <A HREF="#AEN4056" >Adding Your Own Custom Checks</A ></DT ><DT >24.7. <A HREF="#AEN4085" >Not Configuring When Cleaning Targets</A ></DT ></DL ></DD ><DT >25. <A HREF="#chap-caching" >Caching Built Files</A ></DT ><DD ><DL ><DT >25.1. <A HREF="#AEN4101" >Specifying the Shared Cache Directory</A ></DT ><DT >25.2. <A HREF="#AEN4123" >Keeping Build Output Consistent</A ></DT ><DT >25.3. <A HREF="#AEN4137" >Not Using the Shared Cache for Specific Files</A ></DT ><DT >25.4. <A HREF="#AEN4148" >Disabling the Shared Cache</A ></DT ><DT >25.5. <A HREF="#AEN4160" >Populating a Shared Cache With Already-Built Files</A ></DT ><DT >25.6. <A HREF="#AEN4177" >Minimizing Cache Contention: the <TT CLASS="literal" >--random</TT > Option</A ></DT ></DL ></DD ><DT >26. <A HREF="#chap-alias" >Alias Targets</A ></DT ><DT >27. <A HREF="#chap-java" >Java Builds</A ></DT ><DD ><DL ><DT >27.1. <A HREF="#AEN4237" >Building Java Class Files: the <CODE CLASS="function" >Java</CODE > Builder</A ></DT ><DT >27.2. <A HREF="#AEN4261" >How <SPAN CLASS="application" >SCons</SPAN > Handles Java Dependencies</A ></DT ><DT >27.3. <A HREF="#AEN4288" >Building Java Archive (<TT CLASS="filename" >.jar</TT >) Files: the <CODE CLASS="function" >Jar</CODE > Builder</A ></DT ><DT >27.4. <A HREF="#AEN4319" >Building C Header and Stub Files: the <CODE CLASS="function" >JavaH</CODE > Builder</A ></DT ><DT >27.5. <A HREF="#AEN4373" >Building RMI Stub and Skeleton Class Files: the <CODE CLASS="function" >RMIC</CODE > Builder</A ></DT ></DL ></DD ><DT >28. <A HREF="#chap-misc" >Miscellaneous Functionality</A ></DT ><DD ><DL ><DT >28.1. <A HREF="#AEN4401" >Verifying the Python Version: the <CODE CLASS="function" >EnsurePythonVersion</CODE > Function</A ></DT ><DT >28.2. <A HREF="#AEN4417" >Verifying the SCons Version: the <CODE CLASS="function" >EnsureSConsVersion</CODE > Function</A ></DT ><DT >28.3. <A HREF="#AEN4437" >Explicitly Terminating <SPAN CLASS="application" >SCons</SPAN > While Reading <TT CLASS="filename" >SConscript</TT > Files: the <CODE CLASS="function" >Exit</CODE > Function</A ></DT ><DT >28.4. <A HREF="#AEN4461" >Searching for Files: the <CODE CLASS="function" >FindFile</CODE > Function</A ></DT ><DT >28.5. <A HREF="#AEN4490" >Handling Nested Lists: the <CODE CLASS="function" >Flatten</CODE > Function</A ></DT ><DT >28.6. <A HREF="#AEN4517" >Finding the Invocation Directory: the <CODE CLASS="function" >GetLaunchDir</CODE > Function</A ></DT ></DL ></DD ><DT >29. <A HREF="#chap-troubleshooting" >Troubleshooting</A ></DT ><DD ><DL ><DT >29.1. <A HREF="#AEN4543" >Why is That Target Being Rebuilt? the <TT CLASS="literal" >--debug=explain</TT > Option</A ></DT ><DT >29.2. <A HREF="#AEN4593" >What's in That Construction Environment? the <CODE CLASS="function" >Dump</CODE > Method</A ></DT ><DT >29.3. <A HREF="#AEN4619" >What Dependencies Does <SPAN CLASS="application" >SCons</SPAN > Know About? the <TT CLASS="literal" >--tree</TT > Option</A ></DT ><DT >29.4. <A HREF="#AEN4689" >How is <SPAN CLASS="application" >SCons</SPAN > Constructing the Command Lines It Executes? the <TT CLASS="literal" >--debug=presub</TT > Option</A ></DT ><DT >29.5. <A HREF="#AEN4698" >Where is <SPAN CLASS="application" >SCons</SPAN > Searching for Libraries? the <TT CLASS="literal" >--debug=findlibs</TT > Option</A ></DT ><DT >29.6. <A HREF="#AEN4715" >Where is <SPAN CLASS="application" >SCons</SPAN > Blowing Up? the <TT CLASS="literal" >--debug=stacktrace</TT > Option</A ></DT ><DT >29.7. <A HREF="#AEN4736" >How is <SPAN CLASS="application" >SCons</SPAN > Making Its Decisions? the <TT CLASS="literal" >--taskmastertrace</TT > Option</A ></DT ></DL ></DD ><DT >A. <A HREF="#app-variables" >Construction Variables</A ></DT ><DT >B. <A HREF="#app-builders" >Builders</A ></DT ><DT >C. <A HREF="#app-tools" >Tools</A ></DT ><DT >D. <A HREF="#app-tasks" >Handling Common Tasks</A ></DT ></DL ></DIV ><DIV CLASS="LOT" ><DL CLASS="LOT" ><DT ><B >List of Examples</B ></DT ><DT >D-1. <A HREF="#AEN10745" >Wildcard globbing to create a list of filenames</A ></DT ><DT >D-2. <A HREF="#AEN10748" >Filename extension substitution</A ></DT ><DT >D-3. <A HREF="#AEN10751" >Appending a path prefix to a list of filenames</A ></DT ><DT >D-4. <A HREF="#AEN10756" >Substituting a path prefix with another one</A ></DT ><DT >D-5. <A HREF="#AEN10761" >Filtering a filename list to exclude/retain only a specific set of extensions</A ></DT ><DT >D-6. <A HREF="#AEN10766" >The "backtick function": run a shell command and capture the output</A ></DT ></DL ></DIV ><DIV CLASS="preface" ><HR><H1 ><A NAME="chap-preface" ></A >Preface</H1 ><P > Thank you for taking the time to read about <SPAN CLASS="application" >SCons</SPAN >. <SPAN CLASS="application" >SCons</SPAN > is a next-generation software construction tool, or make tool--that is, a software utility for building software (or other files) and keeping built software up-to-date whenever the underlying input files change. </P ><P > The most distinctive thing about <SPAN CLASS="application" >SCons</SPAN > is that its configuration files are actually <SPAN CLASS="emphasis" ><I CLASS="emphasis" >scripts</I ></SPAN >, written in the <SPAN CLASS="application" >Python</SPAN > programming language. This is in contrast to most alternative build tools, which typically invent a new language to configure the build. <SPAN CLASS="application" >SCons</SPAN > still has a learning curve, of course, because you have to know what functions to call to set up your build properly, but the underlying syntax used should be familiar to anyone who has ever looked at a Python script. </P ><P > Paradoxically, using Python as the configuration file format makes <SPAN CLASS="application" >SCons</SPAN > <SPAN CLASS="emphasis" ><I CLASS="emphasis" >easier</I ></SPAN > for non-programmers to learn than the cryptic languages of other build tools, which are usually invented by programmers for other programmers. This is in no small part due to the consistency and readability that are built in to Python. It just so happens that making a real, live scripting language the basis for the configuration files makes it a snap for more accomplished programmers to do more complicated things with builds, as necessary. </P ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN29" >1. <SPAN CLASS="application" >SCons</SPAN > Principles</A ></H2 ><P > There are a few overriding principles we try to live up to in designing and implementing <SPAN CLASS="application" >SCons</SPAN >: </P ><P ></P ><DIV CLASS="variablelist" ><DL ><DT >Correctness</DT ><DD ><P > First and foremost, by default, <SPAN CLASS="application" >SCons</SPAN > guarantees a correct build even if it means sacrificing performance a little. We strive to guarantee the build is correct regardless of how the software being built is structured, how it may have been written, or how unusual the tools are that build it. </P ></DD ><DT >Performance</DT ><DD ><P > Given that the build is correct, we try to make <SPAN CLASS="application" >SCons</SPAN > build software as quickly as possible. In particular, wherever we may have needed to slow down the default <SPAN CLASS="application" >SCons</SPAN > behavior to guarantee a correct build, we also try to make it easy to speed up <SPAN CLASS="application" >SCons</SPAN > through optimization options that let you trade off guaranteed correctness in all end cases for a speedier build in the usual cases. </P ></DD ><DT >Convenience</DT ><DD ><P > <SPAN CLASS="application" >SCons</SPAN > tries to do as much for you out of the box as reasonable, including detecting the right tools on your system and using them correctly to build the software. </P ></DD ></DL ></DIV ><P > In a nutshell, we try hard to make <SPAN CLASS="application" >SCons</SPAN > just "do the right thing" and build software correctly, with a minimum of hassles. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN54" >2. A Caveat About This Guide's Completeness</A ></H2 ><P > One word of warning as you read through this Guide: Like too much Open Source software out there, the <SPAN CLASS="application" >SCons</SPAN > documentation isn't always kept up-to-date with the available features. In other words, there's a lot that <SPAN CLASS="application" >SCons</SPAN > can do that isn't yet covered in this User's Guide. (Come to think of it, that also describes a lot of proprietary software, doesn't it?) </P ><P > Although this User's Guide isn't as complete as we'd like it to be, our development process does emphasize making sure that the <SPAN CLASS="application" >SCons</SPAN > man page is kept up-to-date with new features. So if you're trying to figure out how to do something that <SPAN CLASS="application" >SCons</SPAN > supports but can't find enough (or any) information here, it would be worth your while to look at the man page to see if the information is covered there. And if you do, maybe you'd even consider contributing a section to the User's Guide so the next person looking for that information won't have to go through the same thing...? </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN62" >3. Acknowledgements</A ></H2 ><P > <SPAN CLASS="application" >SCons</SPAN > would not exist without a lot of help from a lot of people, many of whom may not even be aware that they helped or served as inspiration. So in no particular order, and at the risk of leaving out someone: </P ><P > First and foremost, <SPAN CLASS="application" >SCons</SPAN > owes a tremendous debt to Bob Sidebotham, the original author of the classic Perl-based <SPAN CLASS="application" >Cons</SPAN > tool which Bob first released to the world back around 1996. Bob's work on Cons classic provided the underlying architecture and model of specifying a build configuration using a real scripting language. My real-world experience working on Cons informed many of the design decisions in SCons, including the improved parallel build support, making Builder objects easily definable by users, and separating the build engine from the wrapping interface. </P ><P > Greg Wilson was instrumental in getting <SPAN CLASS="application" >SCons</SPAN > started as a real project when he initiated the Software Carpentry design competition in February 2000. Without that nudge, marrying the advantages of the Cons classic architecture with the readability of Python might have just stayed no more than a nice idea. </P ><P > The entire <SPAN CLASS="application" >SCons</SPAN > team have been absolutely wonderful to work with, and <SPAN CLASS="application" >SCons</SPAN > would be nowhere near as useful a tool without the energy, enthusiasm and time people have contributed over the past few years. The "core team" of Chad Austin, Anthony Roach, Bill Deegan, Charles Crain, Steve Leblanc, Greg Noel, Gary Oberbrunner, Greg Spencer and Christoph Wiedemann have been great about reviewing my (and other) changes and catching problems before they get in the code base. Of particular technical note: Anthony's outstanding and innovative work on the tasking engine has given <SPAN CLASS="application" >SCons</SPAN > a vastly superior parallel build model; Charles has been the master of the crucial Node infrastructure; Christoph's work on the Configure infrastructure has added crucial Autoconf-like functionality; and Greg has provided excellent support for Microsoft Visual Studio. </P ><P > Special thanks to David Snopek for contributing his underlying "Autoscons" code that formed the basis of Christoph's work with the Configure functionality. David was extremely generous in making this code available to <SPAN CLASS="application" >SCons</SPAN >, given that he initially released it under the GPL and <SPAN CLASS="application" >SCons</SPAN > is released under a less-restrictive MIT-style license. </P ><P > Thanks to Peter Miller for his splendid change management system, <SPAN CLASS="application" >Aegis</SPAN >, which has provided the <SPAN CLASS="application" >SCons</SPAN > project with a robust development methodology from day one, and which showed me how you could integrate incremental regression tests into a practical development cycle (years before eXtreme Programming arrived on the scene). </P ><P > And last, thanks to Guido van Rossum for his elegant scripting language, which is the basis not only for the <SPAN CLASS="application" >SCons</SPAN > implementation, but for the interface itself. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN83" >4. Contact</A ></H2 ><P > The best way to contact people involved with SCons, including the author, is through the SCons mailing lists. </P ><P > If you want to ask general questions about how to use <SPAN CLASS="application" >SCons</SPAN > send email to <TT CLASS="literal" >users@scons.tigris.org</TT >. </P ><P > If you want to contact the <SPAN CLASS="application" >SCons</SPAN > development community directly, send email to <TT CLASS="literal" >dev@scons.tigris.org</TT >. </P ><P > If you want to receive announcements about <SPAN CLASS="application" >SCons</SPAN >, join the low-volume <TT CLASS="literal" >announce@scons.tigris.org</TT > mailing list. </P ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-build-install" ></A >Chapter 1. Building and Installing <SPAN CLASS="application" >SCons</SPAN ></H1 ><P > This chapter will take you through the basic steps of installing <SPAN CLASS="application" >SCons</SPAN > on your system, and building <SPAN CLASS="application" >SCons</SPAN > if you don't have a pre-built package available (or simply prefer the flexibility of building it yourself). Before that, however, this chapter will also describe the basic steps involved in installing Python on your system, in case that is necessary. Fortunately, both <SPAN CLASS="application" >SCons</SPAN > and Python are very easy to install on almost any system, and Python already comes installed on many systems. </P ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN102" >1.1. Installing Python</A ></H2 ><P > Because <SPAN CLASS="application" >SCons</SPAN > is written in Python, you must obviously have Python installed on your system to use <SPAN CLASS="application" >SCons</SPAN >. Before you try to install Python, you should check to see if Python is already available on your system by typing <KBD CLASS="userinput" >python -V</KBD > (capital 'V') or <KBD CLASS="userinput" >python --version</KBD > at your system's command-line prompt. </P ><PRE CLASS="screen" > $ <KBD CLASS="userinput" >python -V</KBD > Python 2.5.1 </PRE ><P > And on a Windows system with Python installed: </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >python -V</KBD > Python 2.5.1 </PRE ><P > If Python is not installed on your system, you will see an error message stating something like "command not found" (on UNIX or Linux) or "'python' is not recognized as an internal or external command, operable progam or batch file" (on Windows). In that case, you need to install Python before you can install <SPAN CLASS="application" >SCons</SPAN >. </P ><P > (Note that the <CODE CLASS="option" >-V</CODE > option was added to Python version 2.0, so if your system only has an earlier version available you may see an <TT CLASS="literal" >"Unknown option: -V"</TT > error message.) </P ><P > The standard location for information about downloading and installing Python is <A HREF="http://www.python.org/download/" TARGET="_top" >http://www.python.org/download/</A >. See that page for information about how to download and install Python on your system. </P ><P > <SPAN CLASS="application" >SCons</SPAN > will work with any version of Python from 1.5.2 or later. If you need to install Python and have a choice, we recommend using the most recent Python 2.5 version available. Python 2.5 has significant improvements the help speed up the performance of <SPAN CLASS="application" >SCons</SPAN >'. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN124" >1.2. Installing <SPAN CLASS="application" >SCons</SPAN > From Pre-Built Packages</A ></H2 ><P > <SPAN CLASS="application" >SCons</SPAN > comes pre-packaged for installation on a number of systems, including Linux and Windows systems. You do not need to read this entire section, you should only need to read the section appropriate to the type of system you're running on. </P ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN129" >1.2.1. Installing <SPAN CLASS="application" >SCons</SPAN > on Red Hat (and Other RPM-based) Linux Systems</A ></H3 ><P > <SPAN CLASS="application" >SCons</SPAN > comes in RPM (Red Hat Package Manager) format, pre-built and ready to install on Red Hat Linux, Fedora Core, or any other Linux distribution that uses RPM. Your distribution may already have an <SPAN CLASS="application" >SCons</SPAN > RPM built specifically for it; many do, including SuSe, Mandrake and Fedora. You can check for the availability of an <SPAN CLASS="application" >SCons</SPAN > RPM on your distribution's download servers, or by consulting an RPM search site like <A HREF="http://www.rpmfind.net/" TARGET="_top" >http://www.rpmfind.net/</A > or <A HREF="http://rpm.pbone.net/" TARGET="_top" >http://rpm.pbone.net/</A >. </P ><P > If your Linux distribution does not already have a specific <SPAN CLASS="application" >SCons</SPAN > RPM file, you can download and install from the generic RPM provided by the <SPAN CLASS="application" >SCons</SPAN > project. This will install the SCons script(s) in <TT CLASS="filename" >/usr/bin</TT >, and the SCons library modules in <TT CLASS="filename" >/usr/lib/scons</TT >. </P ><P > To install from the command line, simply download the appropriate <TT CLASS="filename" >.rpm</TT > file, and then run: </P ><PRE CLASS="screen" > # <KBD CLASS="userinput" >rpm -Uvh scons-0.96-1.noarch.rpm</KBD > </PRE ><P > Or, you can use a graphical RPM package manager like <SPAN CLASS="application" >gnorpm</SPAN >. See your package manager application's documention for specific instructions about how to use it to install a downloaded RPM. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN149" >1.2.2. Installing <SPAN CLASS="application" >SCons</SPAN > on Debian Linux Systems</A ></H3 ><P > Debian Linux systems use a different package management format that also makes it very easy to install <SPAN CLASS="application" >SCons</SPAN >. </P ><P > If your system is connected to the Internet, you can install the latest official Debian package by running: </P ><PRE CLASS="screen" > # <KBD CLASS="userinput" >apt-get install scons</KBD > </PRE ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN157" >1.2.3. Installing <SPAN CLASS="application" >SCons</SPAN > on Windows Systems</A ></H3 ><P > <SPAN CLASS="application" >SCons</SPAN > provides a Windows installer that makes installation extremely easy. Download the <TT CLASS="filename" >scons-0.95.win32.exe</TT > file from the <SPAN CLASS="application" >SCons</SPAN > download page at <A HREF="http://www.scons.org/download.html" TARGET="_top" >http://www.scons.org/download.html</A >. Then all you need to do is execute the file (usually by clicking on its icon in Windows Explorer). These will take you through a small sequence of windows that will install <SPAN CLASS="application" >SCons</SPAN > on your system. </P ></DIV ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN166" >1.3. Building and Installing <SPAN CLASS="application" >SCons</SPAN > on Any System</A ></H2 ><P > If a pre-built <SPAN CLASS="application" >SCons</SPAN > package is not available for your system, then you can still easily build and install <SPAN CLASS="application" >SCons</SPAN > using the native Python <TT CLASS="filename" >distutils</TT > package. </P ><P > The first step is to download either the <TT CLASS="filename" >scons-1.0.1.tar.gz</TT > or <TT CLASS="filename" >scons-1.0.1.zip</TT >, which are available from the SCons download page at <A HREF="http://www.scons.org/download.html" TARGET="_top" >http://www.scons.org/download.html</A >. </P ><P > Unpack the archive you downloaded, using a utility like <SPAN CLASS="application" >tar</SPAN > on Linux or UNIX, or <SPAN CLASS="application" >WinZip</SPAN > on Windows. This will create a directory called <TT CLASS="filename" >scons-1.0.1</TT >, usually in your local directory. Then change your working directory to that directory and install <SPAN CLASS="application" >SCons</SPAN > by executing the following commands: </P ><PRE CLASS="screen" > # <KBD CLASS="userinput" >cd scons-1.0.1</KBD > # <KBD CLASS="userinput" >python setup.py install</KBD > </PRE ><P > This will build <SPAN CLASS="application" >SCons</SPAN >, install the <SPAN CLASS="application" >scons</SPAN > script in the default system scripts directory (<TT CLASS="filename" >/usr/local/bin</TT > or <TT CLASS="filename" >C:\Python25\Scripts</TT >), and will install the <SPAN CLASS="application" >SCons</SPAN > build engine in an appropriate stand-alone library directory (<TT CLASS="filename" >/usr/local/lib/scons</TT > or <TT CLASS="filename" >C:\Python25\scons</TT >). Because these are system directories, you may need root (on Linux or UNIX) or Administrator (on Windows) privileges to install <SPAN CLASS="application" >SCons</SPAN > like this. </P ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN194" >1.3.1. Building and Installing Multiple Versions of <SPAN CLASS="application" >SCons</SPAN > Side-by-Side</A ></H3 ><P > The <SPAN CLASS="application" >SCons</SPAN > <TT CLASS="filename" >setup.py</TT > script has some extensions that support easy installation of multiple versions of <SPAN CLASS="application" >SCons</SPAN > in side-by-side locations. This makes it easier to download and experiment with different versions of <SPAN CLASS="application" >SCons</SPAN > before moving your official build process to a new version, for example. </P ><P > To install <SPAN CLASS="application" >SCons</SPAN > in a version-specific location, add the <CODE CLASS="option" >--version-lib</CODE > option when you call <TT CLASS="filename" >setup.py</TT >: </P ><PRE CLASS="screen" > # <KBD CLASS="userinput" >python setup.py install --version-lib</KBD > </PRE ><P > This will install the <SPAN CLASS="application" >SCons</SPAN > build engine in the <TT CLASS="filename" >/usr/lib/scons-1.0.1</TT > or <TT CLASS="filename" >C:\Python25\scons-1.0.1</TT > directory, for example. </P ><P > If you use the <CODE CLASS="option" >--version-lib</CODE > option the first time you install <SPAN CLASS="application" >SCons</SPAN >, you do not need to specify it each time you install a new version. The <SPAN CLASS="application" >SCons</SPAN > <TT CLASS="filename" >setup.py</TT > script will detect the version-specific directory name(s) and assume you want to install all versions in version-specific directories. You can override that assumption in the future by explicitly specifying the <CODE CLASS="option" >--standalone-lib</CODE > option. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN218" >1.3.2. Installing <SPAN CLASS="application" >SCons</SPAN > in Other Locations</A ></H3 ><P > You can install <SPAN CLASS="application" >SCons</SPAN > in locations other than the default by specifying the <CODE CLASS="option" >--prefix=</CODE > option: </P ><PRE CLASS="screen" > # <KBD CLASS="userinput" >python setup.py install --prefix=/opt/scons</KBD > </PRE ><P > This would install the <SPAN CLASS="application" >scons</SPAN > script in <TT CLASS="filename" >/opt/scons/bin</TT > and the build engine in <TT CLASS="filename" >/opt/scons/lib/scons</TT >, </P ><P > Note that you can specify both the <CODE CLASS="option" >--prefix=</CODE > and the <CODE CLASS="option" >--version-lib</CODE > options at the same type, in which case <TT CLASS="filename" >setup.py</TT > will install the build engine in a version-specific directory relative to the specified prefix. Adding <CODE CLASS="option" >--version-lib</CODE > to the above example would install the build engine in <TT CLASS="filename" >/opt/scons/lib/scons-1.0.1</TT >. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN236" >1.3.3. Building and Installing <SPAN CLASS="application" >SCons</SPAN > Without Administrative Privileges</A ></H3 ><P > If you don't have the right privileges to install <SPAN CLASS="application" >SCons</SPAN > in a system location, simply use the <TT CLASS="literal" >--prefix=</TT > option to install it in a location of your choosing. For example, to install <SPAN CLASS="application" >SCons</SPAN > in appropriate locations relative to the user's <TT CLASS="literal" >$HOME</TT > directory, the <SPAN CLASS="application" >scons</SPAN > script in <TT CLASS="filename" >$HOME/bin</TT > and the build engine in <TT CLASS="filename" >$HOME/lib/scons</TT >, simply type: </P ><PRE CLASS="screen" > $ <KBD CLASS="userinput" >python setup.py install --prefix=$HOME</KBD > </PRE ><P > You may, of course, specify any other location you prefer, and may use the <CODE CLASS="option" >--version-lib</CODE > option if you would like to install version-specific directories relative to the specified prefix. </P ></DIV ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-simple" ></A >Chapter 2. Simple Builds</H1 ><P > In this chapter, you will see several examples of very simple build configurations using <SPAN CLASS="application" >SCons</SPAN >, which will demonstrate how easy it is to use <SPAN CLASS="application" >SCons</SPAN > to build programs from several different programming languages on different types of systems. </P ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN256" >2.1. Building Simple C / C++ Programs</A ></H2 ><P > Here's the famous "Hello, World!" program in C: </P ><PRE CLASS="programlisting" > int main() { printf("Hello, world!\n"); } </PRE ><P > And here's how to build it using <SPAN CLASS="application" >SCons</SPAN >. Enter the following into a file named <TT CLASS="filename" >SConstruct</TT >: </P ><PRE CLASS="programlisting" > Program('hello.c') </PRE ><P > This minimal configuration file gives <SPAN CLASS="application" >SCons</SPAN > two pieces of information: what you want to build (an executable program), and the input file from which you want it built (the <TT CLASS="filename" >hello.c</TT > file). <A HREF="#b-Program" ><CODE CLASS="function" >Program</CODE ></A > is a <I CLASS="firstterm" >builder_method</I >, a Python call that tells <SPAN CLASS="application" >SCons</SPAN > that you want to build an executable program. </P ><P > That's it. Now run the <SPAN CLASS="application" >scons</SPAN > command to build the program. On a POSIX-compliant system like Linux or UNIX, you'll see something like: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons</KBD > scons: Reading SConscript files ... scons: done reading SConscript files. scons: Building targets ... cc -o hello.o -c hello.c cc -o hello hello.o scons: done building targets. </PRE ><P > On a Windows system with the Microsoft Visual C++ compiler, you'll see something like: </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >scons</KBD > scons: Reading SConscript files ... scons: done reading SConscript files. scons: Building targets ... cl /nologo /c hello.c /Fohello.obj link /nologo /OUT:hello.exe hello.obj scons: done building targets. </PRE ><P > First, notice that you only need to specify the name of the source file, and that <SPAN CLASS="application" >SCons</SPAN > correctly deduces the names of the object and executable files to be built from the base of the source file name. </P ><P > Second, notice that the same input <TT CLASS="filename" >SConstruct</TT > file, without any changes, generates the correct output file names on both systems: <TT CLASS="filename" >hello.o</TT > and <TT CLASS="filename" >hello</TT > on POSIX systems, <TT CLASS="filename" >hello.obj</TT > and <TT CLASS="filename" >hello.exe</TT > on Windows systems. This is a simple example of how <SPAN CLASS="application" >SCons</SPAN > makes it extremely easy to write portable software builds. </P ><P > (Note that we won't provide duplicate side-by-side POSIX and Windows output for all of the examples in this guide; just keep in mind that, unless otherwise specified, any of the examples should work equally well on both types of systems.) </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN288" >2.2. Building Object Files</A ></H2 ><P > The <A HREF="#b-Program" ><CODE CLASS="function" >Program</CODE ></A > builder method is only one of many builder methods that <SPAN CLASS="application" >SCons</SPAN > provides to build different types of files. Another is the <A HREF="#b-Object" ><CODE CLASS="function" >Object</CODE ></A > builder method, which tells <SPAN CLASS="application" >SCons</SPAN > to build an object file from the specified source file: </P ><PRE CLASS="programlisting" > Object('hello.c') </PRE ><P > Now when you run the <SPAN CLASS="application" >scons</SPAN > command to build the program, it will build just the <TT CLASS="filename" >hello.o</TT > object file on a POSIX system: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons</KBD > scons: Reading SConscript files ... scons: done reading SConscript files. scons: Building targets ... cc -o hello.o -c hello.c scons: done building targets. </PRE ><P > And just the <TT CLASS="filename" >hello.obj</TT > object file on a Windows system (with the Microsoft Visual C++ compiler): </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >scons</KBD > scons: Reading SConscript files ... scons: done reading SConscript files. scons: Building targets ... cl /nologo /c hello.c /Fohello.obj scons: done building targets. </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN307" >2.3. Simple Java Builds</A ></H2 ><P > <SPAN CLASS="application" >SCons</SPAN > also makes building with Java extremely easy. Unlike the <A HREF="#b-Program" ><CODE CLASS="function" >Program</CODE ></A > and <A HREF="#b-Object" ><CODE CLASS="function" >Object</CODE ></A > builder methods, however, the <A HREF="#b-Java" ><CODE CLASS="function" >Java</CODE ></A > builder method requires that you specify the name of a destination directory in which you want the class files placed, followed by the source directory in which the <TT CLASS="filename" >.java</TT > files live: </P ><PRE CLASS="programlisting" > Java('classes', 'src') </PRE ><P > If the <TT CLASS="filename" >src</TT > directory contains a single <TT CLASS="filename" >hello.java</TT > file, then the output from running the <SPAN CLASS="application" >scons</SPAN > command would look something like this (on a POSIX system): </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons</KBD > scons: Reading SConscript files ... scons: done reading SConscript files. scons: Building targets ... javac -d classes -sourcepath src src/hello.java scons: done building targets. </PRE ><P > We'll cover Java builds in more detail, including building Java archive (<TT CLASS="filename" >.jar</TT >) and other types of file, in <A HREF="#chap-java" >Chapter 27</A >. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN328" >2.4. Cleaning Up After a Build</A ></H2 ><P > When using <SPAN CLASS="application" >SCons</SPAN >, it is unnecessary to add special commands or target names to clean up after a build. Instead, you simply use the <TT CLASS="literal" >-c</TT > or <TT CLASS="literal" >--clean</TT > option when you invoke <SPAN CLASS="application" >SCons</SPAN >, and <SPAN CLASS="application" >SCons</SPAN > removes the appropriate built files. So if we build our example above and then invoke <TT CLASS="literal" >scons -c</TT > afterwards, the output on POSIX looks like: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons</KBD > scons: Reading SConscript files ... scons: done reading SConscript files. scons: Building targets ... cc -o hello.o -c hello.c cc -o hello hello.o scons: done building targets. % <KBD CLASS="userinput" >scons -c</KBD > scons: Reading SConscript files ... scons: done reading SConscript files. scons: Cleaning targets ... Removed hello.o Removed hello scons: done cleaning targets. </PRE ><P > And the output on Windows looks like: </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >scons</KBD > scons: Reading SConscript files ... scons: done reading SConscript files. scons: Building targets ... cl /nologo /c hello.c /Fohello.obj link /nologo /OUT:hello.exe hello.obj scons: done building targets. C:\><KBD CLASS="userinput" >scons -c</KBD > scons: Reading SConscript files ... scons: done reading SConscript files. scons: Cleaning targets ... Removed hello.obj Removed hello.exe scons: done cleaning targets. </PRE ><P > Notice that <SPAN CLASS="application" >SCons</SPAN > changes its output to tell you that it is <TT CLASS="literal" >Cleaning targets ...</TT > and <TT CLASS="literal" >done cleaning targets.</TT > </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN348" >2.5. The <TT CLASS="filename" >SConstruct</TT > File</A ></H2 ><P > If you're used to build systems like <SPAN CLASS="application" >Make</SPAN > you've already figured out that the <TT CLASS="filename" >SConstruct</TT > file is the <SPAN CLASS="application" >SCons</SPAN > equivalent of a <TT CLASS="filename" >Makefile</TT >. That is, the <TT CLASS="filename" >SConstruct</TT > file is the input file that <SPAN CLASS="application" >SCons</SPAN > reads to control the build. </P ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN358" >2.5.1. <TT CLASS="filename" >SConstruct</TT > Files Are Python Scripts</A ></H3 ><P > There is, however, an important difference between an <TT CLASS="filename" >SConstruct</TT > file and a <TT CLASS="filename" >Makefile</TT >: the <TT CLASS="filename" >SConstruct</TT > file is actually a Python script. If you're not already familiar with Python, don't worry. This User's Guide will introduce you step-by-step to the relatively small amount of Python you'll need to know to be able to use <SPAN CLASS="application" >SCons</SPAN > effectively. And Python is very easy to learn. </P ><P > One aspect of using Python as the scripting language is that you can put comments in your <TT CLASS="filename" >SConstruct</TT > file using Python's commenting convention; that is, everything between a '#' and the end of the line will be ignored: </P ><PRE CLASS="programlisting" > # Arrange to build the "hello" program. Program('hello.c') # "hello.c" is the source file. </PRE ><P > You'll see throughout the remainder of this Guide that being able to use the power of a real scripting language can greatly simplify the solutions to complex requirements of real-world builds. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN370" >2.5.2. <SPAN CLASS="application" >SCons</SPAN > Functions Are Order-Independent</A ></H3 ><P > One important way in which the <TT CLASS="filename" >SConstruct</TT > file is not exactly like a normal Python script, and is more like a <TT CLASS="filename" >Makefile</TT >, is that the order in which the <SPAN CLASS="application" >SCons</SPAN > functions are called in the <TT CLASS="filename" >SConstruct</TT > file does <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > affect the order in which <SPAN CLASS="application" >SCons</SPAN > actually builds the programs and object files you want it to build.<A NAME="AEN380" HREF="#FTN.AEN380" ><SPAN CLASS="footnote" >[1]</SPAN ></A > In other words, when you call the <A HREF="#b-Program" ><CODE CLASS="function" >Program</CODE ></A > builder (or any other builder method), you're not telling <SPAN CLASS="application" >SCons</SPAN > to build the program at the instant the builder method is called. Instead, you're telling <SPAN CLASS="application" >SCons</SPAN > to build the program that you want, for example, a program built from a file named <TT CLASS="filename" >hello.c</TT >, and it's up to <SPAN CLASS="application" >SCons</SPAN > to build that program (and any other files) whenever it's necessary. (We'll learn more about how <SPAN CLASS="application" >SCons</SPAN > decides when building or rebuilding a file is necessary in <A HREF="#chap-depends" >Chapter 6</A >, below.) </P ><P > <SPAN CLASS="application" >SCons</SPAN > reflects this distinction between <SPAN CLASS="emphasis" ><I CLASS="emphasis" >calling a builder method like</I ></SPAN > <CODE CLASS="function" >Program</CODE >> and <SPAN CLASS="emphasis" ><I CLASS="emphasis" >actually building the program</I ></SPAN > by printing the status messages that indicate when it's "just reading" the <TT CLASS="filename" >SConstruct</TT > file, and when it's actually building the target files. This is to make it clear when <SPAN CLASS="application" >SCons</SPAN > is executing the Python statements that make up the <TT CLASS="filename" >SConstruct</TT > file, and when <SPAN CLASS="application" >SCons</SPAN > is actually executing the commands or other actions to build the necessary files. </P ><P > Let's clarify this with an example. Python has a <TT CLASS="literal" >print</TT > statement that prints a string of characters to the screen. If we put <TT CLASS="literal" >print</TT > statements around our calls to the <CODE CLASS="function" >Program</CODE > builder method: </P ><PRE CLASS="programlisting" > print "Calling Program('hello.c')" Program('hello.c') print "Calling Program('goodbye.c')" Program('goodbye.c') print "Finished calling Program()" </PRE ><P > Then when we execute <SPAN CLASS="application" >SCons</SPAN >, we see the output from the <TT CLASS="literal" >print</TT > statements in between the messages about reading the <TT CLASS="filename" >SConscript</TT > files, indicating that that is when the Python statements are being executed: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons</KBD > scons: Reading SConscript files ... Calling Program('hello.c') Calling Program('goodbye.c') Finished calling Program() scons: done reading SConscript files. scons: Building targets ... cc -o goodbye.o -c goodbye.c cc -o goodbye goodbye.o cc -o hello.o -c hello.c cc -o hello hello.o scons: done building targets. </PRE ><P > Notice also that <SPAN CLASS="application" >SCons</SPAN > built the <SPAN CLASS="application" >goodbye</SPAN > program first, even though the "reading <TT CLASS="filename" >SConscript</TT >" output shows that we called <TT CLASS="literal" >Program('hello.c')</TT > first in the <TT CLASS="filename" >SConstruct</TT > file. </P ></DIV ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN420" >2.6. Making the <SPAN CLASS="application" >SCons</SPAN > Output Less Verbose</A ></H2 ><P > You've already seen how <SPAN CLASS="application" >SCons</SPAN > prints some messages about what it's doing, surrounding the actual commands used to build the software: </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >scons</KBD > scons: Reading SConscript files ... scons: done reading SConscript files. scons: Building targets ... cl /nologo /c hello.c /Fohello.obj link /nologo /OUT:hello.exe hello.obj scons: done building targets. </PRE ><P > These messages emphasize the order in which <SPAN CLASS="application" >SCons</SPAN > does its work: all of the configuration files (generically referred to as <TT CLASS="filename" >SConscript</TT > files) are read and executed first, and only then are the target files built. Among other benefits, these messages help to distinguish between errors that occur while the configuration files are read, and errors that occur while targets are being built. </P ><P > One drawback, of course, is that these messages clutter the output. Fortunately, they're easily disabled by using the <TT CLASS="literal" >-Q</TT > option when invoking <SPAN CLASS="application" >SCons</SPAN >: </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >scons -Q</KBD > cl /nologo /c hello.c /Fohello.obj link /nologo /OUT:hello.exe hello.obj </PRE ><P > Because we want this User's Guide to focus on what <SPAN CLASS="application" >SCons</SPAN > is actually doing, we're going to use the <TT CLASS="literal" >-Q</TT > option to remove these messages from the output of all the remaining examples in this Guide. </P ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-less-simple" ></A >Chapter 3. Less Simple Things to Do With Builds</H1 ><P > In this chapter, you will see several examples of very simple build configurations using <SPAN CLASS="application" >SCons</SPAN >, which will demonstrate how easy it is to use <SPAN CLASS="application" >SCons</SPAN > to build programs from several different programming languages on different types of systems. </P ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN443" >3.1. Specifying the Name of the Target (Output) File</A ></H2 ><P > You've seen that when you call the <A HREF="#b-Program" ><CODE CLASS="function" >Program</CODE ></A > builder method, it builds the resulting program with the same base name as the source file. That is, the following call to build an executable program from the <TT CLASS="filename" >hello.c</TT > source file will build an executable program named <SPAN CLASS="application" >hello</SPAN > on POSIX systems, and an executable program named <TT CLASS="filename" >hello.exe</TT > on Windows systems: </P ><PRE CLASS="programlisting" > Program('hello.c') </PRE ><P > If you want to build a program with a different name than the base of the source file name, you simply put the target file name to the left of the source file name: </P ><PRE CLASS="programlisting" > Program('new_hello', 'hello.c') </PRE ><P > (<SPAN CLASS="application" >SCons</SPAN > requires the target file name first, followed by the source file name, so that the order mimics that of an assignment statement in most programming languages, including Python: <TT CLASS="literal" >"program = source files"</TT >.) </P ><P > Now <SPAN CLASS="application" >SCons</SPAN > will build an executable program named <SPAN CLASS="application" >new_hello</SPAN > when run on a POSIX system: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c hello.c cc -o new_hello hello.o </PRE ><P > And <SPAN CLASS="application" >SCons</SPAN > will build an executable program named <SPAN CLASS="application" >new_hello.exe</SPAN > when run on a Windows system: </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >scons -Q</KBD > cl /nologo /c hello.c /Fohello.obj link /nologo /OUT:new_hello.exe hello.obj </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN467" >3.2. Compiling Multiple Source Files</A ></H2 ><P > You've just seen how to configure <SPAN CLASS="application" >SCons</SPAN > to compile a program from a single source file. It's more common, of course, that you'll need to build a program from many input source files, not just one. To do this, you need to put the source files in a Python list (enclosed in square brackets), like so: </P ><PRE CLASS="programlisting" > Program(['prog.c', 'file1.c', 'file2.c']) </PRE ><P > A build of the above example would look like: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o file1.o -c file1.c cc -o file2.o -c file2.c cc -o prog.o -c prog.c cc -o prog prog.o file1.o file2.o </PRE ><P > Notice that <SPAN CLASS="application" >SCons</SPAN > deduces the output program name from the first source file specified in the list--that is, because the first source file was <TT CLASS="filename" >prog.c</TT >, <SPAN CLASS="application" >SCons</SPAN > will name the resulting program <TT CLASS="filename" >prog</TT > (or <TT CLASS="filename" >prog.exe</TT > on a Windows system). If you want to specify a different program name, then (as we've seen in the previous section) you slide the list of source files over to the right to make room for the output program file name. (<SPAN CLASS="application" >SCons</SPAN > puts the output file name to the left of the source file names so that the order mimics that of an assignment statement: "program = source files".) This makes our example: </P ><PRE CLASS="programlisting" > Program('program', ['prog.c', 'file1.c', 'file2.c']) </PRE ><P > On Linux, a build of this example would look like: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o file1.o -c file1.c cc -o file2.o -c file2.c cc -o prog.o -c prog.c cc -o program prog.o file1.o file2.o </PRE ><P > Or on Windows: </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >scons -Q</KBD > cl /nologo /c file1.c /Fofile1.obj cl /nologo /c file2.c /Fofile2.obj cl /nologo /c prog.c /Foprog.obj link /nologo /OUT:program.exe prog.obj file1.obj file2.obj </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN489" >3.3. Making a list of files with <CODE CLASS="function" >Glob</CODE ></A ></H2 ><P > You can also use the <CODE CLASS="function" >Glob</CODE > function to find all files matching a certain template, using the standard shell pattern matching characters <TT CLASS="literal" >*</TT >, <TT CLASS="literal" >?</TT > and <TT CLASS="literal" >[abc]</TT > to match any of <TT CLASS="literal" >a</TT >, <TT CLASS="literal" >b</TT > or <TT CLASS="literal" >c</TT >. <TT CLASS="literal" >[!abc]</TT > is also supported, to match any character <SPAN CLASS="emphasis" ><I CLASS="emphasis" >except</I ></SPAN > <TT CLASS="literal" >a</TT >, <TT CLASS="literal" >b</TT > or <TT CLASS="literal" >c</TT >. This makes many multi-source-file builds quite easy: </P ><PRE CLASS="programlisting" > Program('program', Glob('*.c')) </PRE ><P > The SCons man page has more details on using <CODE CLASS="function" >Glob</CODE > with Variant directories and Repositories, and returning strings rather than Nodes. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN508" >3.4. Specifying Single Files Vs. Lists of Files</A ></H2 ><P > We've now shown you two ways to specify the source for a program, one with a list of files: </P ><PRE CLASS="programlisting" > Program('hello', ['file1.c', 'file2.c']) </PRE ><P > And one with a single file: </P ><PRE CLASS="programlisting" > Program('hello', 'hello.c') </PRE ><P > You could actually put a single file name in a list, too, which you might prefer just for the sake of consistency: </P ><PRE CLASS="programlisting" > Program('hello', ['hello.c']) </PRE ><P > <SPAN CLASS="application" >SCons</SPAN > functions will accept a single file name in either form. In fact, internally, <SPAN CLASS="application" >SCons</SPAN > treats all input as lists of files, but allows you to omit the square brackets to cut down a little on the typing when there's only a single file name. </P ><DIV CLASS="important" ><P ></P ><TABLE CLASS="important" WIDTH="100%" BORDER="0" ><TR ><TD WIDTH="25" ALIGN="CENTER" VALIGN="TOP" ><IMG SRC="../images/important.gif" HSPACE="5" ALT="Important"></TD ><TD ALIGN="LEFT" VALIGN="TOP" ><P > Although <SPAN CLASS="application" >SCons</SPAN > functions are forgiving about whether or not you use a string vs. a list for a single file name, Python itself is more strict about treating lists and strings differently. So where <SPAN CLASS="application" >SCons</SPAN > allows either a string or list: </P ><PRE CLASS="programlisting" > # The following two calls both work correctly: Program('program1', 'program1.c') Program('program2', ['program2.c']) </PRE ><P > Trying to do "Python things" that mix strings and lists will cause errors or lead to incorrect results: </P ><PRE CLASS="programlisting" > common_sources = ['file1.c', 'file2.c'] # THE FOLLOWING IS INCORRECT AND GENERATES A PYTHON ERROR # BECAUSE IT TRIES TO ADD A STRING TO A LIST: Program('program1', common_sources + 'program1.c') # The following works correctly, because it's adding two # lists together to make another list. Program('program2', common_sources + ['program2.c']) </PRE ></TD ></TR ></TABLE ></DIV ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN526" >3.5. Making Lists of Files Easier to Read</A ></H2 ><P > One drawback to the use of a Python list for source files is that each file name must be enclosed in quotes (either single quotes or double quotes). This can get cumbersome and difficult to read when the list of file names is long. Fortunately, <SPAN CLASS="application" >SCons</SPAN > and Python provide a number of ways to make sure that the <TT CLASS="filename" >SConstruct</TT > file stays easy to read. </P ><P > To make long lists of file names easier to deal with, <SPAN CLASS="application" >SCons</SPAN > provides a <CODE CLASS="function" >Split</CODE > function that takes a quoted list of file names, with the names separated by spaces or other white-space characters, and turns it into a list of separate file names. Using the <CODE CLASS="function" >Split</CODE > function turns the previous example into: </P ><PRE CLASS="programlisting" > Program('program', Split('main.c file1.c file2.c')) </PRE ><P > (If you're already familiar with Python, you'll have realized that this is similar to the <CODE CLASS="function" >split()</CODE > method in the Python standard <CODE CLASS="function" >string</CODE > module. Unlike the <CODE CLASS="function" >string.split()</CODE > method, however, the <CODE CLASS="function" >Split</CODE > function does not require a string as input and will wrap up a single non-string object in a list, or return its argument untouched if it's already a list. This comes in handy as a way to make sure arbitrary values can be passed to <SPAN CLASS="application" >SCons</SPAN > functions without having to check the type of the variable by hand.) </P ><P > Putting the call to the <CODE CLASS="function" >Split</CODE > function inside the <CODE CLASS="function" >Program</CODE > call can also be a little unwieldy. A more readable alternative is to assign the output from the <CODE CLASS="function" >Split</CODE > call to a variable name, and then use the variable when calling the <CODE CLASS="function" >Program</CODE > function: </P ><PRE CLASS="programlisting" > src_files = Split('main.c file1.c file2.c') Program('program', src_files) </PRE ><P > Lastly, the <CODE CLASS="function" >Split</CODE > function doesn't care how much white space separates the file names in the quoted string. This allows you to create lists of file names that span multiple lines, which often makes for easier editing: </P ><PRE CLASS="programlisting" > src_files = Split("""main.c file1.c file2.c""") Program('program', src_files) </PRE ><P > (Note in this example that we used the Python "triple-quote" syntax, which allows a string to contain multiple lines. The three quotes can be either single or double quotes.) </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN552" >3.6. Keyword Arguments</A ></H2 ><P > <SPAN CLASS="application" >SCons</SPAN > also allows you to identify the output file and input source files using Python keyword arguments. The output file is known as the <SPAN CLASS="emphasis" ><I CLASS="emphasis" >target</I ></SPAN >, and the source file(s) are known (logically enough) as the <SPAN CLASS="emphasis" ><I CLASS="emphasis" >source</I ></SPAN >. The Python syntax for this is: </P ><PRE CLASS="programlisting" > src_files = Split('main.c file1.c file2.c') Program(target = 'program', source = src_files) </PRE ><P > Because the keywords explicitly identify what each argument is, you can actually reverse the order if you prefer: </P ><PRE CLASS="programlisting" > src_files = Split('main.c file1.c file2.c') Program(source = src_files, target = 'program') </PRE ><P > Whether or not you choose to use keyword arguments to identify the target and source files, and the order in which you specify them when using keywords, are purely personal choices; <SPAN CLASS="application" >SCons</SPAN > functions the same regardless. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN563" >3.7. Compiling Multiple Programs</A ></H2 ><P > In order to compile multiple programs within the same <TT CLASS="filename" >SConstruct</TT > file, simply call the <CODE CLASS="function" >Program</CODE > method multiple times, once for each program you need to build: </P ><PRE CLASS="programlisting" > Program('foo.c') Program('bar', ['bar1.c', 'bar2.c']) </PRE ><P > <SPAN CLASS="application" >SCons</SPAN > would then build the programs as follows: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o bar1.o -c bar1.c cc -o bar2.o -c bar2.c cc -o bar bar1.o bar2.o cc -o foo.o -c foo.c cc -o foo foo.o </PRE ><P > Notice that <SPAN CLASS="application" >SCons</SPAN > does not necessarily build the programs in the same order in which you specify them in the <TT CLASS="filename" >SConstruct</TT > file. <SPAN CLASS="application" >SCons</SPAN > does, however, recognize that the individual object files must be built before the resulting program can be built. We'll discuss this in greater detail in the "Dependencies" section, below. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN577" >3.8. Sharing Source Files Between Multiple Programs</A ></H2 ><P > It's common to re-use code by sharing source files between multiple programs. One way to do this is to create a library from the common source files, which can then be linked into resulting programs. (Creating libraries is discussed in <A HREF="#chap-libraries" >Chapter 4</A >, below.) </P ><P > A more straightforward, but perhaps less convenient, way to share source files between multiple programs is simply to include the common files in the lists of source files for each program: </P ><PRE CLASS="programlisting" > Program(Split('foo.c common1.c common2.c')) Program('bar', Split('bar1.c bar2.c common1.c common2.c')) </PRE ><P > <SPAN CLASS="application" >SCons</SPAN > recognizes that the object files for the <TT CLASS="filename" >common1.c</TT > and <TT CLASS="filename" >common2.c</TT > source files each only need to be built once, even though the resulting object files are each linked in to both of the resulting executable programs: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o bar1.o -c bar1.c cc -o bar2.o -c bar2.c cc -o common1.o -c common1.c cc -o common2.o -c common2.c cc -o bar bar1.o bar2.o common1.o common2.o cc -o foo.o -c foo.c cc -o foo foo.o common1.o common2.o </PRE ><P > If two or more programs share a lot of common source files, repeating the common files in the list for each program can be a maintenance problem when you need to change the list of common files. You can simplify this by creating a separate Python list to hold the common file names, and concatenating it with other lists using the Python <TT CLASS="literal" >+</TT > operator: </P ><PRE CLASS="programlisting" > common = ['common1.c', 'common2.c'] foo_files = ['foo.c'] + common bar_files = ['bar1.c', 'bar2.c'] + common Program('foo', foo_files) Program('bar', bar_files) </PRE ><P > This is functionally equivalent to the previous example. </P ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-libraries" ></A >Chapter 4. Building and Linking with Libraries</H1 ><P > It's often useful to organize large software projects by collecting parts of the software into one or more libraries. <SPAN CLASS="application" >SCons</SPAN > makes it easy to create libraries and to use them in the programs. </P ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN597" >4.1. Building Libraries</A ></H2 ><P > You build your own libraries by specifying <A HREF="#b-Library" ><CODE CLASS="function" >Library</CODE ></A > instead of <A HREF="#b-Program" ><CODE CLASS="function" >Program</CODE ></A >: </P ><PRE CLASS="programlisting" > Library('foo', ['f1.c', 'f2.c', 'f3.c']) </PRE ><P > <SPAN CLASS="application" >SCons</SPAN > uses the appropriate library prefix and suffix for your system. So on POSIX or Linux systems, the above example would build as follows (although <SPAN CLASS="application" >ranlib</SPAN > may not be called on all systems): </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o f1.o -c f1.c cc -o f2.o -c f2.c cc -o f3.o -c f3.c ar rc libfoo.a f1.o f2.o f3.o ranlib libfoo.a </PRE ><P > On a Windows system, a build of the above example would look like: </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >scons -Q</KBD > cl /nologo /c f1.c /Fof1.obj cl /nologo /c f2.c /Fof2.obj cl /nologo /c f3.c /Fof3.obj lib /nologo /OUT:foo.lib f1.obj f2.obj f3.obj </PRE ><P > The rules for the target name of the library are similar to those for programs: if you don't explicitly specify a target library name, <SPAN CLASS="application" >SCons</SPAN > will deduce one from the name of the first source file specified, and <SPAN CLASS="application" >SCons</SPAN > will add an appropriate file prefix and suffix if you leave them off. </P ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN616" >4.1.1. Building Libraries From Source Code or Object Files</A ></H3 ><P > The previous example shows building a library from a list of source files. You can, however, also give the <A HREF="#b-Library" ><CODE CLASS="function" >Library</CODE ></A > call object files, and it will correctly realize In fact, you can arbitrarily mix source code files and object files in the source list: </P ><PRE CLASS="programlisting" > Library('foo', ['f1.c', 'f2.o', 'f3.c', 'f4.o']) </PRE ><P > And SCons realizes that only the source code files must be compiled into object files before creating the final library: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o f1.o -c f1.c cc -o f3.o -c f3.c ar rc libfoo.a f1.o f2.o f3.o f4.o ranlib libfoo.a </PRE ><P > Of course, in this example, the object files must already exist for the build to succeed. See <A HREF="#chap-nodes" >Chapter 5</A >, below, for information about how you can build object files explicitly and include the built files in a library. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN627" >4.1.2. Building Static Libraries Explicitly: the <CODE CLASS="function" >StaticLibrary</CODE > Builder</A ></H3 ><P > The <A HREF="#b-Library" ><CODE CLASS="function" >Library</CODE ></A > function builds a traditional static library. If you want to be explicit about the type of library being built, you can use the synonym <A HREF="#b-StaticLibrary" ><CODE CLASS="function" >StaticLibrary</CODE ></A > function instead of <CODE CLASS="function" >Library</CODE >: </P ><PRE CLASS="programlisting" > StaticLibrary('foo', ['f1.c', 'f2.c', 'f3.c']) </PRE ><P > There is no functional difference between the <A HREF="#b-StaticLibrary" ><CODE CLASS="function" >StaticLibrary</CODE ></A > and <CODE CLASS="function" >Library</CODE > functions. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN641" >4.1.3. Building Shared (DLL) Libraries: the <CODE CLASS="function" >SharedLibrary</CODE > Builder</A ></H3 ><P > If you want to build a shared library (on POSIX systems) or a DLL file (on Windows systems), you use the <A HREF="#b-SharedLibrary" ><CODE CLASS="function" >SharedLibrary</CODE ></A > function: </P ><PRE CLASS="programlisting" > SharedLibrary('foo', ['f1.c', 'f2.c', 'f3.c']) </PRE ><P > The output on POSIX: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o f1.os -c f1.c cc -o f2.os -c f2.c cc -o f3.os -c f3.c cc -o libfoo.so -shared f1.os f2.os f3.os </PRE ><P > And the output on Windows: </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >scons -Q</KBD > cl /nologo /c f1.c /Fof1.obj cl /nologo /c f2.c /Fof2.obj cl /nologo /c f3.c /Fof3.obj link /nologo /dll /out:foo.dll /implib:foo.lib f1.obj f2.obj f3.obj RegServerFunc(target, source, env) </PRE ><P > Notice again that <SPAN CLASS="application" >SCons</SPAN > takes care of building the output file correctly, adding the <TT CLASS="literal" >-shared</TT > option for a POSIX compilation, and the <TT CLASS="literal" >/dll</TT > option on Windows. </P ></DIV ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN658" >4.2. Linking with Libraries</A ></H2 ><P > Usually, you build a library because you want to link it with one or more programs. You link libraries with a program by specifying the libraries in the <A HREF="#cv-LIBS" ><CODE CLASS="envar" >$LIBS</CODE ></A > construction variable, and by specifying the directory in which the library will be found in the <A HREF="#cv-LIBPATH" ><CODE CLASS="envar" >$LIBPATH</CODE ></A > construction variable: </P ><PRE CLASS="programlisting" > Library('foo', ['f1.c', 'f2.c', 'f3.c']) Program('prog.c', LIBS=['foo', 'bar'], LIBPATH='.') </PRE ><P > Notice, of course, that you don't need to specify a library prefix (like <TT CLASS="literal" >lib</TT >) or suffix (like <TT CLASS="literal" >.a</TT > or <TT CLASS="literal" >.lib</TT >). <SPAN CLASS="application" >SCons</SPAN > uses the correct prefix or suffix for the current system. </P ><P > On a POSIX or Linux system, a build of the above example would look like: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o f1.o -c f1.c cc -o f2.o -c f2.c cc -o f3.o -c f3.c ar rc libfoo.a f1.o f2.o f3.o ranlib libfoo.a cc -o prog.o -c prog.c cc -o prog prog.o -L. -lfoo -lbar </PRE ><P > On a Windows system, a build of the above example would look like: </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >scons -Q</KBD > cl /nologo /c f1.c /Fof1.obj cl /nologo /c f2.c /Fof2.obj cl /nologo /c f3.c /Fof3.obj lib /nologo /OUT:foo.lib f1.obj f2.obj f3.obj cl /nologo /c prog.c /Foprog.obj link /nologo /OUT:prog.exe /LIBPATH:. foo.lib bar.lib prog.obj </PRE ><P > As usual, notice that <SPAN CLASS="application" >SCons</SPAN > has taken care of constructing the correct command lines to link with the specified library on each system. </P ><P > Note also that, if you only have a single library to link with, you can specify the library name in single string, instead of a Python list, so that: </P ><PRE CLASS="programlisting" > Program('prog.c', LIBS='foo', LIBPATH='.') </PRE ><P > is equivalent to: </P ><PRE CLASS="programlisting" > Program('prog.c', LIBS=['foo'], LIBPATH='.') </PRE ><P > This is similar to the way that <SPAN CLASS="application" >SCons</SPAN > handles either a string or a list to specify a single source file. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN685" >4.3. Finding Libraries: the <CODE CLASS="envar" >$LIBPATH</CODE > Construction Variable</A ></H2 ><P > By default, the linker will only look in certain system-defined directories for libraries. <SPAN CLASS="application" >SCons</SPAN > knows how to look for libraries in directories that you specify with the <A HREF="#cv-LIBPATH" ><CODE CLASS="envar" >$LIBPATH</CODE ></A > construction variable. <CODE CLASS="envar" >$LIBPATH</CODE > consists of a list of directory names, like so: </P ><PRE CLASS="programlisting" > Program('prog.c', LIBS = 'm', LIBPATH = ['/usr/lib', '/usr/local/lib']) </PRE ><P > Using a Python list is preferred because it's portable across systems. Alternatively, you could put all of the directory names in a single string, separated by the system-specific path separator character: a colon on POSIX systems: </P ><PRE CLASS="programlisting" > LIBPATH = '/usr/lib:/usr/local/lib' </PRE ><P > or a semi-colon on Windows systems: </P ><PRE CLASS="programlisting" > LIBPATH = 'C:\\lib;D:\\lib' </PRE ><P > (Note that Python requires that the backslash separators in a Windows path name be escaped within strings.) </P ><P > When the linker is executed, <SPAN CLASS="application" >SCons</SPAN > will create appropriate flags so that the linker will look for libraries in the same directories as <SPAN CLASS="application" >SCons</SPAN >. So on a POSIX or Linux system, a build of the above example would look like: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o prog.o -c prog.c cc -o prog prog.o -L/usr/lib -L/usr/local/lib -lm </PRE ><P > On a Windows system, a build of the above example would look like: </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >scons -Q</KBD > cl /nologo /c prog.c /Foprog.obj link /nologo /OUT:prog.exe /LIBPATH:\usr\lib /LIBPATH:\usr\local\lib m.lib prog.obj </PRE ><P > Note again that <SPAN CLASS="application" >SCons</SPAN > has taken care of the system-specific details of creating the right command-line options. </P ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-nodes" ></A >Chapter 5. Node Objects</H1 ><P > Internally, <SPAN CLASS="application" >SCons</SPAN > represents all of the files and directories it knows about as <TT CLASS="literal" >Nodes</TT >. These internal objects (not object <SPAN CLASS="emphasis" ><I CLASS="emphasis" >files</I ></SPAN >) can be used in a variety of ways to make your <TT CLASS="filename" >SConscript</TT > files portable and easy to read. </P ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN716" >5.1. Builder Methods Return Lists of Target Nodes</A ></H2 ><P > All builder methods return a list of <CODE CLASS="classname" >Node</CODE > objects that identify the target file or files that will be built. These returned <TT CLASS="literal" >Nodes</TT > can be passed as source files to other builder methods, </P ><P > For example, suppose that we want to build the two object files that make up a program with different options. This would mean calling the <A HREF="#b-Object" ><CODE CLASS="function" >Object</CODE ></A > builder once for each object file, specifying the desired options: </P ><PRE CLASS="programlisting" > Object('hello.c', CCFLAGS='-DHELLO') Object('goodbye.c', CCFLAGS='-DGOODBYE') </PRE ><P > One way to combine these object files into the resulting program would be to call the <A HREF="#b-Program" ><CODE CLASS="function" >Program</CODE ></A > builder with the names of the object files listed as sources: </P ><PRE CLASS="programlisting" > Object('hello.c', CCFLAGS='-DHELLO') Object('goodbye.c', CCFLAGS='-DGOODBYE') Program(['hello.o', 'goodbye.o']) </PRE ><P > The problem with listing the names as strings is that our <TT CLASS="filename" >SConstruct</TT > file is no longer portable across operating systems. It won't, for example, work on Windows because the object files there would be named <TT CLASS="filename" >hello.obj</TT > and <TT CLASS="filename" >goodbye.obj</TT >, not <TT CLASS="filename" >hello.o</TT > and <TT CLASS="filename" >goodbye.o</TT >. </P ><P > A better solution is to assign the lists of targets returned by the calls to the <CODE CLASS="function" >Object</CODE > builder to variables, which we can then concatenate in our call to the <CODE CLASS="function" >Program</CODE > builder: </P ><PRE CLASS="programlisting" > hello_list = Object('hello.c', CCFLAGS='-DHELLO') goodbye_list = Object('goodbye.c', CCFLAGS='-DGOODBYE') Program(hello_list + goodbye_list) </PRE ><P > This makes our <TT CLASS="filename" >SConstruct</TT > file portable again, the build output on Linux looking like: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o goodbye.o -c -DGOODBYE goodbye.c cc -o hello.o -c -DHELLO hello.c cc -o hello hello.o goodbye.o </PRE ><P > And on Windows: </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >scons -Q</KBD > cl -DGOODBYE /c goodbye.c /Fogoodbye.obj cl -DHELLO /c hello.c /Fohello.obj link /nologo /OUT:hello.exe hello.obj goodbye.obj </PRE ><P > We'll see examples of using the list of nodes returned by builder methods throughout the rest of this guide. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN747" >5.2. Explicitly Creating File and Directory Nodes</A ></H2 ><P > It's worth mentioning here that <SPAN CLASS="application" >SCons</SPAN > maintains a clear distinction between Nodes that represent files and Nodes that represent directories. <SPAN CLASS="application" >SCons</SPAN > supports <CODE CLASS="function" >File</CODE > and <CODE CLASS="function" >Dir</CODE > functions that, repectively, return a file or directory Node: </P ><PRE CLASS="programlisting" > hello_c = File('hello.c') Program(hello_c) classes = Dir('classes') Java(classes, 'src') </PRE ><P > Normally, you don't need to call <CODE CLASS="function" >File</CODE > or <CODE CLASS="function" >Dir</CODE > directly, because calling a builder method automatically treats strings as the names of files or directories, and translates them into the Node objects for you. The <CODE CLASS="function" >File</CODE > and <CODE CLASS="function" >Dir</CODE > functions can come in handy in situations where you need to explicitly instruct <SPAN CLASS="application" >SCons</SPAN > about the type of Node being passed to a builder or other function, or unambiguously refer to a specific file in a directory tree. </P ><P > There are also times when you may need to refer to an entry in a file system without knowing in advance whether it's a file or a directory. For those situations, <SPAN CLASS="application" >SCons</SPAN > also supports an <CODE CLASS="function" >Entry</CODE > function, which returns a Node that can represent either a file or a directory. </P ><PRE CLASS="programlisting" > xyzzy = Entry('xyzzy') </PRE ><P > The returned <TT CLASS="literal" >xyzzy</TT > Node will be turned into a file or directory Node the first time it is used by a builder method or other function that requires one vs. the other. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN767" >5.3. Printing <CODE CLASS="classname" >Node</CODE > File Names</A ></H2 ><P > One of the most common things you can do with a Node is use it to print the file name that the node represents. For example, the following <TT CLASS="filename" >SConstruct</TT > file: </P ><PRE CLASS="programlisting" > hello_c = File('hello.c') Program(hello_c) classes = Dir('classes') Java(classes, 'src') object_list = Object('hello.c') program_list = Program(object_list) print "The object file is:", object_list[0] print "The program file is:", program_list[0] </PRE ><P > Would print the following file names on a POSIX system: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > The object file is: hello.o The program file is: hello cc -o hello.o -c hello.c cc -o hello hello.o </PRE ><P > And the following file names on a Windows system: </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >scons -Q</KBD > The object file is: hello.obj The program file is: hello.exe cl /nologo /c hello.c /Fohello.obj link /nologo /OUT:hello.exe hello.obj </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN779" >5.4. Using a <CODE CLASS="classname" >Node</CODE >'s File Name as a String</A ></H2 ><P > Printing a <CODE CLASS="classname" >Node</CODE >'s name as described in the previous section works because the string representation of a <CODE CLASS="classname" >Node</CODE > is the name of the file. If you want to do something other than print the name of the file, you can fetch it by using the builtin Python <CODE CLASS="function" >str</CODE > function. For example, if you want to use the Python <CODE CLASS="function" >os.path.exists</CODE > to figure out whether a file exists while the <TT CLASS="filename" >SConstruct</TT > file is being read and executed, you can fetch the string as follows: </P ><PRE CLASS="programlisting" > import os.path program_list = Program('hello.c') program_name = str(program_list[0]) if not os.path.exists(program_name): print program_name, "does not exist!" </PRE ><P > Which executes as follows on a POSIX system: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > hello does not exist! cc -o hello.o -c hello.c cc -o hello hello.o </PRE ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-depends" ></A >Chapter 6. Dependencies</H1 ><P > So far we've seen how <SPAN CLASS="application" >SCons</SPAN > handles one-time builds. But one of the main functions of a build tool like <SPAN CLASS="application" >SCons</SPAN > is to rebuild only the necessary things when source files change--or, put another way, <SPAN CLASS="application" >SCons</SPAN > should <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > waste time rebuilding things that have already been built. You can see this at work simply by re-invoking <SPAN CLASS="application" >SCons</SPAN > after building our simple <SPAN CLASS="application" >hello</SPAN > example: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >scons -Q</KBD > scons: `.' is up to date. </PRE ><P > The second time it is executed, <SPAN CLASS="application" >SCons</SPAN > realizes that the <SPAN CLASS="application" >hello</SPAN > program is up-to-date with respect to the current <TT CLASS="filename" >hello.c</TT > source file, and avoids rebuilding it. You can see this more clearly by naming the <SPAN CLASS="application" >hello</SPAN > program explicitly on the command line: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q hello</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >scons -Q hello</KBD > scons: `hello' is up to date. </PRE ><P > Note that <SPAN CLASS="application" >SCons</SPAN > reports <TT CLASS="literal" >"...is up to date"</TT > only for target files named explicitly on the command line, to avoid cluttering the output. </P ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN815" >6.1. Deciding When an Input File Has Changed: the <CODE CLASS="function" >Decider</CODE > Function</A ></H2 ><P > Another aspect of avoiding unnecessary rebuilds is the fundamental build tool behavior of <SPAN CLASS="emphasis" ><I CLASS="emphasis" >rebuilding</I ></SPAN > things when an input file changes, so that the built software is up to date. By default, <SPAN CLASS="application" >SCons</SPAN > keeps track of this through an MD5 <TT CLASS="literal" >signature</TT >, or checksum, of the contents of each file, although you can easily configure <SPAN CLASS="application" >SCons</SPAN > to use the modification times (or time stamps) instead. You can even specify your own Python function for deciding if an input file has changed. </P ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN823" >6.1.1. Using MD5 Signatures to Decide if a File Has Changed</A ></H3 ><P > By default, <SPAN CLASS="application" >SCons</SPAN > keeps track of whether a file has changed based on an MD5 checksum of the file's contents, not the file's modification time. This means that you may be surprised by the default <SPAN CLASS="application" >SCons</SPAN > behavior if you are used to the <SPAN CLASS="application" >Make</SPAN > convention of forcing a rebuild by updating the file's modification time (using the <SPAN CLASS="application" >touch</SPAN > command, for example): </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q hello</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >touch hello.c</KBD > % <KBD CLASS="userinput" >scons -Q hello</KBD > scons: `hello' is up to date. </PRE ><P > Even though the file's modification time has changed, <SPAN CLASS="application" >SCons</SPAN > realizes that the contents of the <TT CLASS="filename" >hello.c</TT > file have <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > changed, and therefore that the <SPAN CLASS="application" >hello</SPAN > program need not be rebuilt. This avoids unnecessary rebuilds when, for example, someone rewrites the contents of a file without making a change. But if the contents of the file really do change, then <SPAN CLASS="application" >SCons</SPAN > detects the change and rebuilds the program as required: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q hello</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >edit hello.c</KBD > [CHANGE THE CONTENTS OF hello.c] % <KBD CLASS="userinput" >scons -Q hello</KBD > cc -o hello.o -c hello.c cc -o hello hello.o </PRE ><P > Note that you can, if you wish, specify this default behavior (MD5 signatures) explicitly using the <CODE CLASS="function" >Decider</CODE > function as follows: </P ><PRE CLASS="programlisting" > Program('hello.c') Decider('MD5') </PRE ><P > You can also use the string <TT CLASS="literal" >'content'</TT > as a synonym for <TT CLASS="literal" >'MD5'</TT > when calling the <CODE CLASS="function" >Decider</CODE > function. </P ><DIV CLASS="section" ><HR><H4 CLASS="section" ><A NAME="AEN851" >6.1.1.1. Ramifications of Using MD5 Signatures</A ></H4 ><P > Using MD5 Signatures to decide if an input file has changed has one surprising benefit: if a source file has been changed in such a way that the contents of the rebuilt target file(s) will be exactly the same as the last time the file was built, then any "downstream" target files that depend on the rebuilt-but-not-changed target file actually need not be rebuilt. </P ><P > So if, for example, a user were to only change a comment in a <TT CLASS="filename" >hello.c</TT > file, then the rebuilt <TT CLASS="filename" >hello.o</TT > file would be exactly the same as the one previously built (assuming the compiler doesn't put any build-specific information in the object file). <SPAN CLASS="application" >SCons</SPAN > would then realize that it would not need to rebuild the <SPAN CLASS="application" >hello</SPAN > program as follows: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q hello</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >edit hello.c</KBD > [CHANGE A COMMENT IN hello.c] % <KBD CLASS="userinput" >scons -Q hello</KBD > cc -o hello.o -c hello.c scons: `hello' is up to date. </PRE ><P > In essence, <SPAN CLASS="application" >SCons</SPAN > "short-circuits" any dependent builds when it realizes that a target file has been rebuilt to exactly the same file as the last build. This does take some extra processing time to read the contents of the target (<TT CLASS="filename" >hello.o</TT >) file, but often saves time when the rebuild that was avoided would have been time-consuming and expensive. </P ></DIV ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN866" >6.1.2. Using Time Stamps to Decide If a File Has Changed</A ></H3 ><P > If you prefer, you can configure <SPAN CLASS="application" >SCons</SPAN > to use the modification time of a file, not the file contents, when deciding if a target needs to be rebuilt. <SPAN CLASS="application" >SCons</SPAN > gives you two ways to use time stamps to decide if an input file has changed since the last time a target has been built. </P ><P > The most familiar way to use time stamps is the way <SPAN CLASS="application" >Make</SPAN > does: that is, have <SPAN CLASS="application" >SCons</SPAN > decide and target must be rebuilt if if a source file's modification time is <SPAN CLASS="emphasis" ><I CLASS="emphasis" >newer</I ></SPAN > than the target file. To do this, call the <CODE CLASS="function" >Decider</CODE > function as follows: </P ><PRE CLASS="programlisting" > Program('hello.c') Decider('timestamp-newer') </PRE ><P > This makes <SPAN CLASS="application" >SCons</SPAN > act like <SPAN CLASS="application" >Make</SPAN > when a file's modification time is updated (using the <SPAN CLASS="application" >touch</SPAN > command, for example): </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q hello</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >touch hello.c</KBD > % <KBD CLASS="userinput" >scons -Q hello</KBD > cc -o hello.o -c hello.c cc -o hello hello.o </PRE ><P > And, in fact, because this behavior is the same as the behavior of <SPAN CLASS="application" >Make</SPAN >, you can also use the string <TT CLASS="literal" >'make'</TT > as a synonym for <TT CLASS="literal" >'timestamp-newer'</TT > when calling the <CODE CLASS="function" >Decider</CODE > function: </P ><PRE CLASS="programlisting" > Program('hello.c') Decider('make') </PRE ><P > One drawback to using times stamps exactly like <SPAN CLASS="application" >Make</SPAN > is that if an input file's modification time suddenly becomes <SPAN CLASS="emphasis" ><I CLASS="emphasis" >older</I ></SPAN > than a target file, the target file will not be rebuilt. This can happen if an old copy of a source file is restored from a backup archive, for example. The contents of the restored file will likely be different than they were the last time a dependent target was built, but the target won't be rebuilt because the modification time of the source file is not newer than the target. </P ><P > Because <SPAN CLASS="application" >SCons</SPAN > actually stores information about the source files' time stamps whenever a target is built, it can handle this situation by checking for an exact match of the source file time stamp, instead of just whether or not the source file is newer than the target file. To do this, specify the argument <TT CLASS="literal" >'timestamp-match'</TT > when calling the <CODE CLASS="function" >Decider</CODE > function: </P ><PRE CLASS="programlisting" > Program('hello.c') Decider('timestamp-match') </PRE ><P > When configured this way, <SPAN CLASS="application" >SCons</SPAN > will rebuild a target whenever a source file's modification time has changed. So if we use the <TT CLASS="literal" >touch -t</TT > option to change the modification time of <TT CLASS="filename" >hello.c</TT > to an old date (January 1, 1989), <SPAN CLASS="application" >SCons</SPAN > will still rebuild the target file: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q hello</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >touch -t 198901010000 hello.c</KBD > % <KBD CLASS="userinput" >scons -Q hello</KBD > cc -o hello.o -c hello.c scons: `hello' is up to date. </PRE ><P > In general, the only reason to prefer <TT CLASS="literal" >timestamp-newer</TT > instead of <TT CLASS="literal" >timestamp-match</TT >, would be if you have some specific reason to require this <SPAN CLASS="application" >Make</SPAN >-like behavior of not rebuilding a target when an otherwise-modified source file is older. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN912" >6.1.3. Deciding If a File Has Changed Using Both MD Signatures and Time Stamps</A ></H3 ><P > As a performance enhancement, <SPAN CLASS="application" >SCons</SPAN > provides a way to use MD5 checksums of file contents but to only read the contents whenever the file's timestamp has changed. To do this, call the <CODE CLASS="function" >Decider</CODE > function with <TT CLASS="literal" >'MD5-timestamp'</TT > argument as follows: </P ><PRE CLASS="programlisting" > Program('hello.c') Decider('MD5-timestamp') </PRE ><P > So configured, <SPAN CLASS="application" >SCons</SPAN > will still behave like it does when using <TT CLASS="literal" >Decider('MD5')</TT >: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q hello</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >touch hello.c</KBD > % <KBD CLASS="userinput" >scons -Q hello</KBD > scons: `hello' is up to date. % <KBD CLASS="userinput" >edit hello.c</KBD > [CHANGE THE CONTENTS OF hello.c] % <KBD CLASS="userinput" >scons -Q hello</KBD > cc -o hello.o -c hello.c cc -o hello hello.o </PRE ><P > However, the second call to <SPAN CLASS="application" >SCons</SPAN > in the above output, when the build is up-to-date, will have been performed by simply looking at the modification time of the <TT CLASS="filename" >hello.c</TT > file, not by opening it and performing an MD5 checksum calcuation on its contents. This can significantly speed up many up-to-date builds. </P ><P > The only drawback to using <TT CLASS="literal" >Decider('MD5-timestamp')</TT > is that <SPAN CLASS="application" >SCons</SPAN > will <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > rebuild a target file if a source file was modified within one second of the last time <SPAN CLASS="application" >SCons</SPAN > built the file. While most developers are programming, this isn't a problem in practice, since it's unlikely that someone will have built and then thought quickly enought to make a substantive change to a source file within one second. Certain build scripts or continuous integration tools may, however, rely on the ability to applying changes to files automatically and then rebuild as quickly as possible, in which case use of <TT CLASS="literal" >Decider('MD5-timestamp')</TT > may not be appropriate. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN937" >6.1.4. Writing Your Own Custom <CODE CLASS="function" >Decider</CODE > Function</A ></H3 ><P > The different string values that we've passed to the <CODE CLASS="function" >Decider</CODE > function are essentially used by <SPAN CLASS="application" >SCons</SPAN > to pick one of several specific internal functions that implement various ways of deciding if a dependency (usually a source file) has changed since a target file has been built. As it turns out, you can also supply your own function to decide if a dependency has changed. </P ><P > For example, suppose we have an input file that contains a lot of data, in some specific regular format, that is used to rebuild a lot of different target files, but each target file really only depends on one particular section of the input file. We'd like to have each target file depend on only its section of the input file. However, since the input file may contain a lot of data, we only want to open the input file if its timestamp has changed. This could done with a custom <CODE CLASS="function" >Decider</CODE > function that might look something like this: </P ><PRE CLASS="programlisting" > Program('hello.c') def decide_if_changed(dependency, target, prev_ni): if self.get_timestamp() != prev_ni.timestamp: dep = str(dependency) tgt = str(target) if specific_part_of_file_has_changed(dep, tgt): return True return False Decider(decide_if_changed) </PRE ><P > Note that in the function definition, the <CODE CLASS="varname" >dependency</CODE > (input file) is the first argument, and then the <CODE CLASS="varname" >target</CODE >. Both of these are passed to the functions as SCons <CODE CLASS="classname" >Node</CODE > objects, which we convert to strings using the Python <CODE CLASS="function" >str()</CODE >. </P ><P > The third argument, <CODE CLASS="varname" >prev_ni</CODE >, is an object that holds the signature or timestamp information that was recorded about the dependency the last time the target was built. A <CODE CLASS="varname" >prev_ni</CODE > object can hold different information, depending on the type of thing that the <CODE CLASS="varname" >dependency</CODE > argument represents. For normal files, the <CODE CLASS="varname" >prev_ni</CODE > object has the following attributes: </P ><P ></P ><DIV CLASS="variablelist" ><DL ><DT >.csig</DT ><DD ><P > The <SPAN CLASS="emphasis" ><I CLASS="emphasis" >content signature</I ></SPAN >, or MD5 checksum, of the contents of the <CODE CLASS="varname" >dependency</CODE > file the list time the <CODE CLASS="varname" >target</CODE > was built. </P ></DD ><DT >.size</DT ><DD ><P > The size in bytes of the <CODE CLASS="varname" >dependency</CODE > file the list time the target was built. </P ></DD ><DT >.timestamp</DT ><DD ><P > The modification time of the <CODE CLASS="varname" >dependency</CODE > file the list time the <CODE CLASS="varname" >target</CODE > was built. </P ></DD ></DL ></DIV ><P > Note that ignoring some of the arguments in your custom <CODE CLASS="function" >Decider</CODE > function is a perfectly normal thing to do, if they don't impact the way you want to decide if the dependency file has changed. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN977" >6.1.5. Mixing Different Ways of Deciding If a File Has Changed</A ></H3 ><P > The previous examples have all demonstrated calling the global <CODE CLASS="function" >Decider</CODE > function to configure all dependency decisions that <SPAN CLASS="application" >SCons</SPAN > makes. Sometimes, however, you want to be able to configure different decision-making for different targets. When that's necessary, you can use the <CODE CLASS="function" >env.Decider</CODE > method to affect only the configuration decisions for targets built with a specific construction environment. </P ><P > For example, if we arbitrarily want to build one program using MD5 checkums and another use file modification times from the same source we might configure it this way: </P ><PRE CLASS="programlisting" > env1 = Environment(CPPPATH = ['.']) env2 = env1.Clone() env2.Decider('timestamp-match') env1.Program('prog-MD5', 'program1.c') env2.Program('prog-timestamp', 'program2.c') </PRE ><P > If both of the programs include the same <TT CLASS="filename" >inc.h</TT > file, then updating the modification time of <TT CLASS="filename" >inc.h</TT > (using the <SPAN CLASS="application" >touch</SPAN > command) will cause only <TT CLASS="filename" >prog-timestamp</TT > to be rebuilt: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o program1.o -c -I. program1.c cc -o prog-MD5 program1.o cc -o program2.o -c -I. program2.c cc -o prog-timestamp program2.o % <KBD CLASS="userinput" >touch inc.h</KBD > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o program2.o -c -I. program2.c cc -o prog-timestamp program2.o </PRE ></DIV ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN994" >6.2. Older Functions for Deciding When an Input File Has Changed</A ></H2 ><P > <SPAN CLASS="application" >SCons</SPAN > still supports two functions that used to be the primary methods for configuring the decision about whether or not an input file has changed. Although they're not officially deprecated yet, their use is discouraged, mainly because they rely on a somewhat confusing distinction between how source files and target files are handled. These functions are documented here mainly in case you encounter them in existing <TT CLASS="filename" >SConscript</TT > files. </P ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN999" >6.2.1. The <CODE CLASS="function" >SourceSignatures</CODE > Function</A ></H3 ><P > The <CODE CLASS="function" >SourceSignatures</CODE > function is fairly straightforward, and supports two different argument values to configure whether source file changes should be decided using MD5 signatures: </P ><PRE CLASS="programlisting" > Program('hello.c') SourceSignatures('MD5') </PRE ><P > Or using time stamps: </P ><PRE CLASS="programlisting" > Program('hello.c') SourceSignatures('timestamp') </PRE ><P > These are roughly equivalent to specifying <CODE CLASS="function" >Decider('MD5')</CODE > or <CODE CLASS="function" >Decider('timestamp-match')</CODE >, respectively, although it only affects how SCons makes decisions about dependencies on <SPAN CLASS="emphasis" ><I CLASS="emphasis" >source</I ></SPAN > files--that is, files that are not built from any other files. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN1011" >6.2.2. The <CODE CLASS="function" >TargetSignatures</CODE > Function</A ></H3 ><P > The <CODE CLASS="function" >TargetSignatures</CODE > function specifies how <SPAN CLASS="application" >SCons</SPAN > decides when a target file has changed <SPAN CLASS="emphasis" ><I CLASS="emphasis" >when it is used as a dependency of (input to) another target</I ></SPAN >--that is, the <CODE CLASS="function" >TargetSignatures</CODE > function configures how the signatures of "intermediate" target files are used when deciding if a "downstream" target file must be rebuilt. <A NAME="AEN1019" HREF="#FTN.AEN1019" ><SPAN CLASS="footnote" >[2]</SPAN ></A > </P ><P > The <CODE CLASS="function" >TargetSignatures</CODE > function supports the same <TT CLASS="literal" >'MD5'</TT > and <TT CLASS="literal" >'timestamp'</TT > argument values that are supported by the <CODE CLASS="function" >SourceSignatures</CODE >, with the same meanings, but applied to target files. That is, in the example: </P ><PRE CLASS="programlisting" > Program('hello.c') TargetSignatures('MD5') </PRE ><P > The MD5 checksum of the <TT CLASS="filename" >hello.o</TT > target file will be used to decide if it has changed since the last time the "downstream" <SPAN CLASS="application" >hello</SPAN > target file was built. And in the example: </P ><PRE CLASS="programlisting" > Program('hello.c') TargetSignatures('timestamp') </PRE ><P > The modification time of the <TT CLASS="filename" >hello.o</TT > target file will be used to decide if it has changed since the last time the "downstream" <SPAN CLASS="application" >hello</SPAN > target file was built. </P ><P > The <CODE CLASS="function" >TargetSignatures</CODE > function supports two additional argument values: <TT CLASS="literal" >'source'</TT > and <TT CLASS="literal" >'build'</TT >. The <TT CLASS="literal" >'source'</TT > argument specifies that decisions involving whether target files have changed since a previous build should use the same behavior for the decisions configured for source files (using the <CODE CLASS="function" >SourceSignatures</CODE > function). So in the example: </P ><PRE CLASS="programlisting" > Program('hello.c') TargetSignatures('source') SourceSignatures('timestamp') </PRE ><P > All files, both targets and sources, will use modification times when deciding if an input file has changed since the last time a target was built. </P ><P > Lastly, the <TT CLASS="literal" >'build'</TT > argument specifies that <SPAN CLASS="application" >SCons</SPAN > should examine the build status of a target file and always rebuild a "downstream" target if the target file was itself rebuilt, without re-examining the contents or timestamp of the newly-built target file. If the target file was not rebuilt during this <SPAN CLASS="application" >scons</SPAN > invocation, then the target file will be examined the same way as configured by the <CODE CLASS="function" >SourceSignature</CODE > call to decide if it has changed. </P ><P > This mimics the behavior of <TT CLASS="literal" >build signatures</TT > in earlier versions of <SPAN CLASS="application" >SCons</SPAN >. A <TT CLASS="literal" >build signature</TT > re-combined signatures of all the input files that went into making the target file, so that the target file itself did not need to have its contents read to compute an MD5 signature. This can improve performance for some configurations, but is generally not as effective as using <TT CLASS="literal" >Decider('MD5-timestamp')</TT >. </P ></DIV ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN1056" >6.3. Implicit Dependencies: The <CODE CLASS="envar" >$CPPPATH</CODE > Construction Variable</A ></H2 ><P > Now suppose that our "Hello, World!" program actually has an <TT CLASS="literal" >#include</TT > line to include the <TT CLASS="filename" >hello.h</TT > file in the compilation: </P ><PRE CLASS="programlisting" > #include <hello.h> int main() { printf("Hello, %s!\n", string); } </PRE ><P > And, for completeness, the <TT CLASS="filename" >hello.h</TT > file looks like this: </P ><PRE CLASS="programlisting" > #define string "world" </PRE ><P > In this case, we want <SPAN CLASS="application" >SCons</SPAN > to recognize that, if the contents of the <TT CLASS="filename" >hello.h</TT > file change, the <SPAN CLASS="application" >hello</SPAN > program must be recompiled. To do this, we need to modify the <TT CLASS="filename" >SConstruct</TT > file like so: </P ><PRE CLASS="programlisting" > Program('hello.c', CPPPATH = '.') </PRE ><P > The <A HREF="#cv-CPPPATH" ><CODE CLASS="envar" >$CPPPATH</CODE ></A > value tells <SPAN CLASS="application" >SCons</SPAN > to look in the current directory (<TT CLASS="literal" >'.'</TT >) for any files included by C source files (<TT CLASS="filename" >.c</TT > or <TT CLASS="filename" >.h</TT > files). With this assignment in the <TT CLASS="filename" >SConstruct</TT > file: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q hello</KBD > cc -o hello.o -c -I. hello.c cc -o hello hello.o % <KBD CLASS="userinput" >scons -Q hello</KBD > scons: `hello' is up to date. % <KBD CLASS="userinput" >edit hello.h</KBD > [CHANGE THE CONTENTS OF hello.h] % <KBD CLASS="userinput" >scons -Q hello</KBD > cc -o hello.o -c -I. hello.c cc -o hello hello.o </PRE ><P > First, notice that <SPAN CLASS="application" >SCons</SPAN > added the <TT CLASS="literal" >-I.</TT > argument from the <CODE CLASS="envar" >$CPPPATH</CODE > variable so that the compilation would find the <TT CLASS="filename" >hello.h</TT > file in the local directory. </P ><P > Second, realize that <SPAN CLASS="application" >SCons</SPAN > knows that the <SPAN CLASS="application" >hello</SPAN > program must be rebuilt because it scans the contents of the <TT CLASS="filename" >hello.c</TT > file for the <TT CLASS="literal" >#include</TT > lines that indicate another file is being included in the compilation. <SPAN CLASS="application" >SCons</SPAN > records these as <SPAN CLASS="emphasis" ><I CLASS="emphasis" >implicit dependencies</I ></SPAN > of the target file, Consequently, when the <TT CLASS="filename" >hello.h</TT > file changes, <SPAN CLASS="application" >SCons</SPAN > realizes that the <TT CLASS="filename" >hello.c</TT > file includes it, and rebuilds the resulting <SPAN CLASS="application" >hello</SPAN > program that depends on both the <TT CLASS="filename" >hello.c</TT > and <TT CLASS="filename" >hello.h</TT > files. </P ><P > Like the <A HREF="#cv-LIBPATH" ><CODE CLASS="envar" >$LIBPATH</CODE ></A > variable, the <CODE CLASS="envar" >$CPPPATH</CODE > variable may be a list of directories, or a string separated by the system-specific path separation character (':' on POSIX/Linux, ';' on Windows). Either way, <SPAN CLASS="application" >SCons</SPAN > creates the right command-line options so that the following example: </P ><PRE CLASS="programlisting" > Program('hello.c', CPPPATH = ['include', '/home/project/inc']) </PRE ><P > Will look like this on POSIX or Linux: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q hello</KBD > cc -o hello.o -c -Iinclude -I/home/project/inc hello.c cc -o hello hello.o </PRE ><P > And like this on Windows: </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >scons -Q hello.exe</KBD > cl /nologo /Iinclude /I\home\project\inc /c hello.c /Fohello.obj link /nologo /OUT:hello.exe hello.obj </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN1115" >6.4. Caching Implicit Dependencies</A ></H2 ><P > Scanning each file for <TT CLASS="literal" >#include</TT > lines does take some extra processing time. When you're doing a full build of a large system, the scanning time is usually a very small percentage of the overall time spent on the build. You're most likely to notice the scanning time, however, when you <SPAN CLASS="emphasis" ><I CLASS="emphasis" >rebuild</I ></SPAN > all or part of a large system: <SPAN CLASS="application" >SCons</SPAN > will likely take some extra time to "think about" what must be built before it issues the first build command (or decides that everything is up to date and nothing must be rebuilt). </P ><P > In practice, having <SPAN CLASS="application" >SCons</SPAN > scan files saves time relative to the amount of potential time lost to tracking down subtle problems introduced by incorrect dependencies. Nevertheless, the "waiting time" while <SPAN CLASS="application" >SCons</SPAN > scans files can annoy individual developers waiting for their builds to finish. Consequently, <SPAN CLASS="application" >SCons</SPAN > lets you cache the implicit dependencies that its scanners find, for use by later builds. You can do this by specifying the <TT CLASS="literal" >--implicit-cache</TT > option on the command line: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q --implicit-cache hello</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >scons -Q hello</KBD > scons: `hello' is up to date. </PRE ><P > If you don't want to specify <TT CLASS="literal" >--implicit-cache</TT > on the command line each time, you can make it the default behavior for your build by setting the <TT CLASS="literal" >implicit_cache</TT > option in an <TT CLASS="filename" >SConscript</TT > file: </P ><PRE CLASS="programlisting" > SetOption('implicit_cache', 1) </PRE ><P > <SPAN CLASS="application" >SCons</SPAN > does not cache implicit dependencies like this by default because the <TT CLASS="literal" >--implicit-cache</TT > causes <SPAN CLASS="application" >SCons</SPAN > to simply use the implicit dependencies stored during the last run, without any checking for whether or not those dependencies are still correct. Specifically, this means <TT CLASS="literal" >--implicit-cache</TT > instructs <SPAN CLASS="application" >SCons</SPAN > to <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > rebuild "correctly" in the following cases: </P ><P ></P ><UL ><LI ><P > When <TT CLASS="literal" >--implicit-cache</TT > is used, <SPAN CLASS="application" >SCons</SPAN > will ignore any changes that may have been made to search paths (like <CODE CLASS="envar" >$CPPPATH</CODE > or <CODE CLASS="envar" >$LIBPATH</CODE >,). This can lead to <SPAN CLASS="application" >SCons</SPAN > not rebuilding a file if a change to <CODE CLASS="envar" >$CPPPATH</CODE > would normally cause a different, same-named file from a different directory to be used. </P ></LI ><LI ><P > When <TT CLASS="literal" >--implicit-cache</TT > is used, <SPAN CLASS="application" >SCons</SPAN > will not detect if a same-named file has been added to a directory that is earlier in the search path than the directory in which the file was found last time. </P ></LI ></UL ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN1154" >6.4.1. The <TT CLASS="literal" >--implicit-deps-changed</TT > Option</A ></H3 ><P > When using cached implicit dependencies, sometimes you want to "start fresh" and have <SPAN CLASS="application" >SCons</SPAN > re-scan the files for which it previously cached the dependencies. For example, if you have recently installed a new version of external code that you use for compilation, the external header files will have changed and the previously-cached implicit dependencies will be out of date. You can update them by running <SPAN CLASS="application" >SCons</SPAN > with the <TT CLASS="literal" >--implicit-deps-changed</TT > option: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q --implicit-deps-changed hello</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >scons -Q hello</KBD > scons: `hello' is up to date. </PRE ><P > In this case, <SPAN CLASS="application" >SCons</SPAN > will re-scan all of the implicit dependencies and cache updated copies of the information. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN1166" >6.4.2. The <TT CLASS="literal" >--implicit-deps-unchanged</TT > Option</A ></H3 ><P > By default when caching dependencies, <SPAN CLASS="application" >SCons</SPAN > notices when a file has been modified and re-scans the file for any updated implicit dependency information. Sometimes, however, you may want to force <SPAN CLASS="application" >SCons</SPAN > to use the cached implicit dependencies, even if the source files changed. This can speed up a build for example, when you have changed your source files but know that you haven't changed any <TT CLASS="literal" >#include</TT > lines. In this case, you can use the <TT CLASS="literal" >--implicit-deps-unchanged</TT > option: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q --implicit-deps-unchanged hello</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >scons -Q hello</KBD > scons: `hello' is up to date. </PRE ><P > In this case, <SPAN CLASS="application" >SCons</SPAN > will assume that the cached implicit dependencies are correct and will not bother to re-scan changed files. For typical builds after small, incremental changes to source files, the savings may not be very big, but sometimes every bit of improved performance counts. </P ></DIV ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN1179" >6.5. Explicit Dependencies: the <CODE CLASS="function" >Depends</CODE > Function</A ></H2 ><P > Sometimes a file depends on another file that is not detected by an <SPAN CLASS="application" >SCons</SPAN > scanner. For this situation, <SPAN CLASS="application" >SCons</SPAN > allows you to specific explicitly that one file depends on another file, and must be rebuilt whenever that file changes. This is specified using the <CODE CLASS="function" >Depends</CODE > method: </P ><PRE CLASS="programlisting" > hello = Program('hello.c') Depends(hello, 'other_file') </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q hello</KBD > cc -c hello.c -o hello.o cc -o hello hello.o % <KBD CLASS="userinput" >scons -Q hello</KBD > scons: `hello' is up to date. % <KBD CLASS="userinput" >edit other_file</KBD > [CHANGE THE CONTENTS OF other_file] % <KBD CLASS="userinput" >scons -Q hello</KBD > cc -c hello.c -o hello.o cc -o hello hello.o </PRE ><P > Note that the dependency (the second argument to <CODE CLASS="function" >Depends</CODE >) may also be a list of Node objects (for example, as returned by a call to a Builder): </P ><PRE CLASS="programlisting" > hello = Program('hello.c') goodbye = Program('goodbye.c') Depends(hello, goodbye) </PRE ><P > in which case the dependency or dependencies will be built before the target(s): </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q hello</KBD > cc -c goodbye.c -o goodbye.o cc -o goodbye goodbye.o cc -c hello.c -o hello.o cc -o hello hello.o </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN1198" >6.6. Dependencies From External Files: the <CODE CLASS="function" >ParseDepends</CODE > Function</A ></H2 ><P > <SPAN CLASS="application" >SCons</SPAN > has built-in scanners for a number of languages. Sometimes these scanners fail to extract certain implicit dependencies due to limitations of the scanner implementation. </P ><P > The following example illustrates a case where the built-in C scanner is unable to extract the implicit dependency on a header file. </P ><PRE CLASS="programlisting" > #define FOO_HEADER <foo.h> #include FOO_HEADER int main() { return FOO; } </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c -I. hello.c cc -o hello hello.o % <KBD CLASS="userinput" >edit foo.h</KBD > [CHANGE CONTENTS OF foo.h] % <KBD CLASS="userinput" >scons -Q</KBD > scons: `.' is up to date. </PRE ><P > Apparently, the scanner does not know about the header dependency. Being not a full-fledged C preprocessor, the scanner does not expand the macro. </P ><P > In these cases, you may also use the compiler to extract the implicit dependencies. <CODE CLASS="function" >ParseDepends</CODE > can parse the contents of the compiler output in the style of <SPAN CLASS="application" >Make</SPAN >, and explicitly establish all of the listed dependencies. </P ><P > The following example uses <CODE CLASS="function" >ParseDepends</CODE > to process a compiler generated dependency file which is generated as a side effect during compilation of the object file: </P ><PRE CLASS="programlisting" > obj = Object('hello.c', CCFLAGS='-MD -MF hello.d', CPPPATH='.') SideEffect('hello.d', obj) ParseDepends('hello.d') Program('hello', obj) </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c -MD -MF hello.d -I. hello.c cc -o hello hello.o % <KBD CLASS="userinput" >edit foo.h</KBD > [CHANGE CONTENTS OF foo.h] % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c -MD -MF hello.d -I. hello.c </PRE ><P > Parsing dependencies from a compiler-generated <TT CLASS="filename" >.d</TT > file has a chicken-and-egg problem, that causes unnecessary rebuilds: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c -MD -MF hello.d -I. hello.c cc -o hello hello.o % <KBD CLASS="userinput" >scons -Q --debug=explain</KBD > scons: rebuilding `hello.o' because `foo.h' is a new dependency cc -o hello.o -c -MD -MF hello.d -I. hello.c % <KBD CLASS="userinput" >scons -Q</KBD > scons: `.' is up to date. </PRE ><P > In the first pass, the dependency file is generated while the object file is compiled. At that time, <SPAN CLASS="application" >SCons</SPAN > does not know about the dependency on <TT CLASS="filename" >foo.h</TT >. In the second pass, the object file is regenerated because <TT CLASS="filename" >foo.h</TT > is detected as a new dependency. </P ><P > <CODE CLASS="function" >ParseDepends</CODE > immediately reads the specified file at invocation time and just returns if the file does not exist. A dependency file generated during the build process is not automatically parsed again. Hence, the compiler-extracted dependencies are not stored in the signature database during the same build pass. This limitation of <CODE CLASS="function" >ParseDepends</CODE > leads to unnecessary recompilations. Therefore, <CODE CLASS="function" >ParseDepends</CODE > should only be used if scanners are not available for the employed language or not powerful enough for the specific task. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN1234" >6.7. Ignoring Dependencies: the <CODE CLASS="function" >Ignore</CODE > Function</A ></H2 ><P > Sometimes it makes sense to not rebuild a program, even if a dependency file changes. In this case, you would tell <SPAN CLASS="application" >SCons</SPAN > specifically to ignore a dependency as follows: </P ><PRE CLASS="programlisting" > hello = Program('hello.c') Ignore(hello, 'hello.h') </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q hello</KBD > cc -c -o hello.o hello.c cc -o hello hello.o % <KBD CLASS="userinput" >scons -Q hello</KBD > scons: `hello' is up to date. % <KBD CLASS="userinput" >edit hello.h</KBD > [CHANGE THE CONTENTS OF hello.h] % <KBD CLASS="userinput" >scons -Q hello</KBD > scons: `hello' is up to date. </PRE ><P > Now, the above example is a little contrived, because it's hard to imagine a real-world situation where you wouldn't want to rebuild <SPAN CLASS="application" >hello</SPAN > if the <TT CLASS="filename" >hello.h</TT > file changed. A more realistic example might be if the <SPAN CLASS="application" >hello</SPAN > program is being built in a directory that is shared between multiple systems that have different copies of the <TT CLASS="filename" >stdio.h</TT > include file. In that case, <SPAN CLASS="application" >SCons</SPAN > would notice the differences between the different systems' copies of <TT CLASS="filename" >stdio.h</TT > and would rebuild <SPAN CLASS="application" >hello</SPAN > each time you change systems. You could avoid these rebuilds as follows: </P ><PRE CLASS="programlisting" > hello = Program('hello.c', CPPPATH=['/usr/include']) Ignore(hello, '/usr/include/stdio.h') </PRE ><P > <CODE CLASS="function" >Ignore</CODE > can also be used to prevent a generated file from being built by default. This is due to the fact that directories depend on their contents. So to ignore a generated file from the default build, you specify that the directory should ignore the generated file. Note that the file will still be built if the user specifically requests the target on scons command line, or if the file is a dependency of another file which is requested and/or is built by default. </P ><PRE CLASS="programlisting" > hello_obj=Object('hello.c') hello = Program(hello_obj) Ignore('.',[hello,hello_obj]) </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > scons: `.' is up to date. % <KBD CLASS="userinput" >scons -Q hello</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >scons -Q hello</KBD > scons: `hello' is up to date. </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN1261" >6.8. Order-Only Dependencies: the <CODE CLASS="function" >Requires</CODE > Function</A ></H2 ><P > Occasionally, it may be useful to specify that a certain file or directory must, if necessary, be built or created before some other target is built, but that changes to that file or directory do <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > require that the target itself be rebuilt. Such a relationship is called an <SPAN CLASS="emphasis" ><I CLASS="emphasis" >order-only dependency</I ></SPAN > because it only affects the order in which things must be built--the dependency before the target--but it is not a strict dependency relationship because the target should not change in response to changes in the dependent file. </P ><P > For example, suppose that you want to create a file every time you run a build that identifies the time the build was performed, the version number, etc., and which is included in every program that you build. The version file's contents will change every build. If you specify a normal dependency relationship, then every program that depends on that file would be rebuilt every time you ran <SPAN CLASS="application" >SCons</SPAN >. For example, we could use some Python code in a <TT CLASS="filename" >SConstruct</TT > file to create a new <TT CLASS="filename" >version.c</TT > file with a string containing the current date every time we run <SPAN CLASS="application" >SCons</SPAN >, and then link a program with the resulting object file by listing <TT CLASS="filename" >version.c</TT > in the sources: </P ><PRE CLASS="programlisting" > import time version_c_text = """ char *date = "%s"; """ % time.ctime(time.time()) open('version.c', 'w').write(version_c_text) hello = Program(['hello.c', 'version.c']) </PRE ><P > If we list <TT CLASS="filename" >version.c</TT > as an actual source file, though, then <TT CLASS="filename" >version.o</TT > will get rebuilt every time we run <SPAN CLASS="application" >SCons</SPAN > (because the <TT CLASS="filename" >SConstruct</TT > file itself changes the contents of <TT CLASS="filename" >version.c</TT >) and the <TT CLASS="filename" >hello</TT > executable will get re-linked every time (because the <TT CLASS="filename" >version.o</TT > file changes): </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > gcc -o hello.o -c hello.c gcc -o version.o -c version.c gcc -o hello hello.o version.o % <KBD CLASS="userinput" >scons -Q</KBD > gcc -o version.o -c version.c gcc -o hello hello.o version.o % <KBD CLASS="userinput" >scons -Q</KBD > gcc -o version.o -c version.c gcc -o hello hello.o version.o </PRE ><P > One solution is to use the <CODE CLASS="function" >Requires</CODE > function to specify that the <TT CLASS="filename" >version.o</TT > must be rebuilt before it is used by the link step, but that changes to <TT CLASS="filename" >version.o</TT > should not actually cause the <TT CLASS="filename" >hello</TT > executable to be re-linked: </P ><PRE CLASS="programlisting" > import time version_c_text = """ char *date = "%s"; """ % time.ctime(time.time()) open('version.c', 'w').write(version_c_text) version_obj = Object('version.c') hello = Program('hello.c', LINKFLAGS = str(version_obj[0])) Requires(hello, version_obj) </PRE ><P > Notice that because we can no longer list <TT CLASS="filename" >version.c</TT > as one of the sources for the <TT CLASS="filename" >hello</TT > program, we have to find some other way to get it into the link command line. For this example, we're cheating a bit and stuffing the object file name (extracted from <TT CLASS="literal" >version_obj</TT > list returned by the <CODE CLASS="function" >Object</CODE > call) into the <A HREF="#cv-LINKFLAGS" ><CODE CLASS="envar" >$LINKFLAGS</CODE ></A > variable, because <CODE CLASS="envar" >$LINKFLAGS</CODE > is already included in the <A HREF="#cv-LINKCOM" ><CODE CLASS="envar" >$LINKCOM</CODE ></A > command line. </P ><P > With these changes, we get the desired behavior of re-building the <TT CLASS="filename" >version.o</TT > file, and therefore re-linking the <TT CLASS="filename" >hello</TT > executable, only when the <TT CLASS="filename" >hello.c</TT > has changed: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c hello.c cc -o version.o -c version.c cc -o hello version.o hello.o % <KBD CLASS="userinput" >scons -Q</KBD > scons: `.' is up to date. % <KBD CLASS="userinput" >edit hello.c</KBD > [CHANGE THE CONTENTS OF hello.c] % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c hello.c cc -o hello version.o hello.o % <KBD CLASS="userinput" >scons -Q</KBD > scons: `.' is up to date. </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN1312" >6.9. The <CODE CLASS="function" >AlwaysBuild</CODE > Function</A ></H2 ><P > How <SPAN CLASS="application" >SCons</SPAN > handles dependencies can also be affected by the <CODE CLASS="function" >AlwaysBuild</CODE > method. When a file is passed to the <CODE CLASS="function" >AlwaysBuild</CODE > method, like so: </P ><PRE CLASS="programlisting" > hello = Program('hello.c') AlwaysBuild(hello) </PRE ><P > Then the specified target file (<SPAN CLASS="application" >hello</SPAN > in our example) will always be considered out-of-date and rebuilt whenever that target file is evaluated while walking the dependency graph: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello hello.o </PRE ><P > The <CODE CLASS="function" >AlwaysBuild</CODE > function has a somewhat misleading name, because it does not actually mean the target file will be rebuilt every single time <SPAN CLASS="application" >SCons</SPAN > is invoked. Instead, it means that the target will, in fact, be rebuilt whenever the target file is encountered while evaluating the targets specified on the command line (and their dependencies). So specifying some other target on the command line, a target that does <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > itself depend on the <CODE CLASS="function" >AlwaysBuild</CODE > target, will still be rebuilt only if it's out-of-date with respect to its dependencies: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >scons -Q hello.o</KBD > scons: `hello.o' is up to date. </PRE ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-environments" ></A >Chapter 7. Environments</H1 ><P > An <TT CLASS="literal" >environment</TT > is a collection of values that can affect how a program executes. <SPAN CLASS="application" >SCons</SPAN > distinguishes between three different types of environments that can affect the behavior of <SPAN CLASS="application" >SCons</SPAN > itself (subject to the configuration in the <TT CLASS="filename" >SConscript</TT > files), as well as the compilers and other tools it executes: </P ><P ></P ><DIV CLASS="variablelist" ><DL ><DT >External Environment</DT ><DD ><P > The <TT CLASS="literal" >external environment</TT > is the set of variables in the user's environment at the time the user runs <SPAN CLASS="application" >SCons</SPAN >. These variables are available within the <TT CLASS="filename" >SConscript</TT > files through the Python <TT CLASS="literal" >os.environ</TT > dictionary. See <A HREF="#sect-external-environments" >Section 7.1</A >, below. </P ></DD ><DT ><TT CLASS="literal" >Construction Environment</TT ></DT ><DD ><P > A <TT CLASS="literal" >construction environment</TT > is a distinct object creating within a <TT CLASS="filename" >SConscript</TT > file and and which contains values that affect how <SPAN CLASS="application" >SCons</SPAN > decides what action to use to build a target, and even to define which targets should be built from which sources. One of the most powerful features of <SPAN CLASS="application" >SCons</SPAN > is the ability to create multiple <TT CLASS="literal" >construction environments</TT >, including the ability to clone a new, customized <TT CLASS="literal" >construction environment</TT > from an existing <TT CLASS="literal" >construction environment</TT >. See <A HREF="#sect-construction-environments" >Section 7.2</A >, below. </P ></DD ><DT >Execution Environment</DT ><DD ><P > An <TT CLASS="literal" >execution environment</TT > is the values that <SPAN CLASS="application" >SCons</SPAN > sets when executing an external command (such as a compiler or linker) to build one or more targets. Note that this is not the same as the <TT CLASS="literal" >external environment</TT > (see above). See <A HREF="#sect-execution-environments" >Section 7.3</A >, below. </P ></DD ></DL ></DIV ><P > Unlike <SPAN CLASS="application" >Make</SPAN >, <SPAN CLASS="application" >SCons</SPAN > does not automatically copy or import values between different environments (with the exception of explicit clones of <TT CLASS="literal" >construction environments</TT >, which inherit values from their parent). This is a deliberate design choice to make sure that builds are, by default, repeatable regardless of the values in the user's external environment. This avoids a whole class of problems with builds where a developer's local build works because a custom variable setting causes a different comiler or build option to be used, but the checked-in change breaks the official build because it uses different environment variable settings. </P ><P > Note that the <TT CLASS="filename" >SConscript</TT > writer can easily arrange for variables to be copied or imported between environments, and this is often very useful (or even downright necessary) to make it easy for developers to customize the build in appropriate ways. The point is <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > that copying variables between different environments is evil and must always be avoided. Instead, it should be up to the implementer of the build system to make conscious choices about how and when to import a variable from one environment to another, making informed decisions about striking the right balance between making the build repeatable on the one hand and convenient to use on the other. </P ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="sect-external-environments" >7.1. Using Values From the External Environment</A ></H2 ><P > The <TT CLASS="literal" >external environment</TT > variable settings that the user has in force when executing <SPAN CLASS="application" >SCons</SPAN > are available through the normal Python <CODE CLASS="envar" >os.environ</CODE > dictionary. This means that you must add an <TT CLASS="literal" >import os</TT > statuement to any <TT CLASS="filename" >SConscript</TT > file in which you want to use values from the user's external environment. </P ><PRE CLASS="programlisting" > import os </PRE ><P > More usefully, you can use the <CODE CLASS="envar" >os.environ</CODE > dictionary in your <TT CLASS="filename" >SConscript</TT > files to initialize <TT CLASS="literal" >construction environments</TT > with values from the user's external environment. See the next section, <A HREF="#sect-construction-environments" >Section 7.2</A >, for information on how to do this. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="sect-construction-environments" >7.2. Construction Environments</A ></H2 ><P > It is rare that all of the software in a large, complicated system needs to be built the same way. For example, different source files may need different options enabled on the command line, or different executable programs need to be linked with different libraries. <SPAN CLASS="application" >SCons</SPAN > accommodates these different build requirements by allowing you to create and configure multiple <TT CLASS="literal" >construction environments</TT > that control how the software is built. A <TT CLASS="literal" >construction environment</TT > is an object that has a number of associated <TT CLASS="literal" >construction variables</TT >, each with a name and a value. (A construction environment also has an attached set of <CODE CLASS="classname" >Builder</CODE > methods, about which we'll learn more later.) </P ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN1400" >7.2.1. Creating a <TT CLASS="literal" >Construction Environment</TT >: the <CODE CLASS="function" >Environment</CODE > Function</A ></H3 ><P > A <TT CLASS="literal" >construction environment</TT > is created by the <CODE CLASS="function" >Environment</CODE > method: </P ><PRE CLASS="programlisting" > env = Environment() </PRE ><P > By default, <SPAN CLASS="application" >SCons</SPAN > initializes every new construction environment with a set of <TT CLASS="literal" >construction variables</TT > based on the tools that it finds on your system, plus the default set of builder methods necessary for using those tools. The construction variables are initialized with values describing the C compiler, the Fortran compiler, the linker, etc., as well as the command lines to invoke them. </P ><P > When you initialize a construction environment you can set the values of the environment's <TT CLASS="literal" >construction variables</TT > to control how a program is built. For example: </P ><PRE CLASS="programlisting" > import os env = Environment(CC = 'gcc', CCFLAGS = '-O2') env.Program('foo.c') </PRE ><P > The construction environment in this example is still initialized with the same default construction variable values, except that the user has explicitly specified use of the GNU C compiler <SPAN CLASS="application" >gcc</SPAN >, and further specifies that the <TT CLASS="literal" >-O2</TT > (optimization level two) flag should be used when compiling the object file. In other words, the explicit initializations of <A HREF="#cv-CC" ><CODE CLASS="envar" >$CC</CODE ></A > and <A HREF="#cv-CCFLAGS" ><CODE CLASS="envar" >$CCFLAGS</CODE ></A > override the default values in the newly-created construction environment. So a run from this example would look like: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > gcc -o foo.o -c -O2 foo.c gcc -o foo foo.o </PRE ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN1423" >7.2.2. Fetching Values From a <TT CLASS="literal" >Construction Environment</TT ></A ></H3 ><P > You can fetch individual construction variables using the normal syntax for accessing individual named items in a Python dictionary: </P ><PRE CLASS="programlisting" > env = Environment() print "CC is:", env['CC'] </PRE ><P > This example <TT CLASS="filename" >SConstruct</TT > file doesn't build anything, but because it's actually a Python script, it will print the value of <A HREF="#cv-CC" ><CODE CLASS="envar" >$CC</CODE ></A > for us: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > CC is: cc scons: `.' is up to date. </PRE ><P > A construction environment, however, is actually an object with associated methods, etc. If you want to have direct access to only the dictionary of construction variables, you can fetch this using the <TT CLASS="literal" >Dictionary</TT > method: </P ><PRE CLASS="programlisting" > env = Environment(FOO = 'foo', BAR = 'bar') dict = env.Dictionary() for key in ['OBJSUFFIX', 'LIBSUFFIX', 'PROGSUFFIX']: print "key = %s, value = %s" % (key, dict[key]) </PRE ><P > This <TT CLASS="filename" >SConstruct</TT > file will print the specified dictionary items for us on POSIX systems as follows: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > key = OBJSUFFIX, value = .o key = LIBSUFFIX, value = .a key = PROGSUFFIX, value = scons: `.' is up to date. </PRE ><P > And on Windows: </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >scons -Q</KBD > key = OBJSUFFIX, value = .obj key = LIBSUFFIX, value = .lib key = PROGSUFFIX, value = .exe scons: `.' is up to date. </PRE ><P > If you want to loop and print the values of all of the construction variables in a construction environment, the Python code to do that in sorted order might look something like: </P ><PRE CLASS="programlisting" > env = Environment() dict = env.Dictionary() keys = dict.keys() keys.sort() for key in keys: print "construction variable = '%s', value = '%s'" % (key, dict[key]) </PRE ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN1446" >7.2.3. Expanding Values From a <TT CLASS="literal" >Construction Environment</TT >: the <CODE CLASS="function" >subst</CODE > Method</A ></H3 ><P > Another way to get information from a construction environment. is to use the <CODE CLASS="function" >subst</CODE > method on a string containing <TT CLASS="literal" >$</TT > expansions of construction variable names. As a simple example, the example from the previous section that used <TT CLASS="literal" >env['CC']</TT > to fetch the value of <A HREF="#cv-CC" ><CODE CLASS="envar" >$CC</CODE ></A > could also be written as: </P ><PRE CLASS="programlisting" > env = Environment() print "CC is:", env.subst('$CC') </PRE ><P > One advantage of using <CODE CLASS="function" >subst</CODE > to expand strings is that construction variables in the result get re-expanded until there are no expansions left in the string. So a simple fetch of a value like <A HREF="#cv-CCCOM" ><CODE CLASS="envar" >$CCCOM</CODE ></A >: </P ><PRE CLASS="programlisting" > env = Environment(CCFLAGS = '-DFOO') print "CCCOM is:", env['CCCOM'] </PRE ><P > Will print the unexpanded value of <CODE CLASS="envar" >$CCCOM</CODE >, showing us the construction variables that still need to be expanded: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > CCCOM is: $CC $CCFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS -c -o $TARGET $SOURCES scons: `.' is up to date. </PRE ><P > Calling the <CODE CLASS="function" >subst</CODE > method on <CODE CLASS="varname" >$CCOM</CODE >, however: </P ><PRE CLASS="programlisting" > env = Environment(CCFLAGS = '-DFOO') print "CCCOM is:", env.subst('$CCCOM') </PRE ><P > Will recursively expand all of the construction variables prefixed with <TT CLASS="literal" >$</TT > (dollar signs), showing us the final output: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > CCCOM is: gcc -DFOO -c -o scons: `.' is up to date. </PRE ><P > Note that because we're not expanding this in the context of building something there are no target or source files for <A HREF="#cv-TARGET" ><CODE CLASS="envar" >$TARGET</CODE ></A > and <A HREF="#cv-SOURCES" ><CODE CLASS="envar" >$SOURCES</CODE ></A > to expand. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN1479" >7.2.4. Controlling the Default <TT CLASS="literal" >Construction Environment</TT >: the <CODE CLASS="function" >DefaultEnvironment</CODE > Function</A ></H3 ><P > All of the <CODE CLASS="classname" >Builder</CODE > functions that we've introduced so far, like <CODE CLASS="function" >Program</CODE > and <CODE CLASS="function" >Library</CODE >, actually use a default <TT CLASS="literal" >construction environment</TT > that contains settings for the various compilers and other tools that <SPAN CLASS="application" >SCons</SPAN > configures by default, or otherwise knows about and has discovered on your system. The goal of the default construction environment is to make many configurations to "just work" to build software using readily available tools with a minimum of configuration changes. </P ><P > You can, however, control the settings in the default contstruction environment by using the <CODE CLASS="function" >DefaultEnvironment</CODE > function to initialize various settings: </P ><PRE CLASS="programlisting" > DefaultEnvironment(CC = '/usr/local/bin/gcc') </PRE ><P > When configured as above, all calls to the <CODE CLASS="function" >Program</CODE > or <CODE CLASS="function" >Object</CODE > Builder will build object files with the <TT CLASS="filename" >/usr/local/bin/gcc</TT > compiler. </P ><P > Note that the <CODE CLASS="function" >DefaultEnvironment</CODE > function returns the initialized default construction environment object, which can then be manipulated like any other construction environment. So the following would be equivalent to the previous example, setting the <CODE CLASS="envar" >$CC</CODE > variable to <TT CLASS="filename" >/usr/local/bin/gcc</TT > but as a separate step after the default construction environment has been initialized: </P ><PRE CLASS="programlisting" > env = DefaultEnvironment() env['CC'] = '/usr/local/bin/gcc' </PRE ><P > One very common use of the <CODE CLASS="function" >DefaultEnvironment</CODE > function is to speed up <SPAN CLASS="application" >SCons</SPAN > initialization. As part of trying to make most default configurations "just work," <SPAN CLASS="application" >SCons</SPAN > will actually search the local system for installed compilers and other utilities. This search can take time, especially on systems with slow or networked file systems. If you know which compiler(s) and/or other utilities you want to configure, you can control the search that <SPAN CLASS="application" >SCons</SPAN > performs by specifying some specific tool modules with which to initialize the default construction environment: </P ><PRE CLASS="programlisting" > env = DefaultEnvironment(tools = ['gcc', 'gnulink'], CC = '/usr/local/bin/gcc') </PRE ><P > So the above example would tell <SPAN CLASS="application" >SCons</SPAN > to explicitly configure the default environment to use its normal GNU Compiler and GNU Linker settings (without having to search for them, or any other utilities for that matter), and specifically to use the compiler found at <TT CLASS="filename" >/usr/local/bin/gcc</TT >. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN1510" >7.2.5. Multiple <TT CLASS="literal" >Construction Environments</TT ></A ></H3 ><P > The real advantage of construction environments is that you can create as many different construction environments as you need, each tailored to a different way to build some piece of software or other file. If, for example, we need to build one program with the <TT CLASS="literal" >-O2</TT > flag and another with the <TT CLASS="literal" >-g</TT > (debug) flag, we would do this like so: </P ><PRE CLASS="programlisting" > opt = Environment(CCFLAGS = '-O2') dbg = Environment(CCFLAGS = '-g') opt.Program('foo', 'foo.c') dbg.Program('bar', 'bar.c') </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o bar.o -c -g bar.c cc -o bar bar.o cc -o foo.o -c -O2 foo.c cc -o foo foo.o </PRE ><P > We can even use multiple construction environments to build multiple versions of a single program. If you do this by simply trying to use the <A HREF="#b-Program" ><CODE CLASS="function" >Program</CODE ></A > builder with both environments, though, like this: </P ><PRE CLASS="programlisting" > opt = Environment(CCFLAGS = '-O2') dbg = Environment(CCFLAGS = '-g') opt.Program('foo', 'foo.c') dbg.Program('foo', 'foo.c') </PRE ><P > Then <SPAN CLASS="application" >SCons</SPAN > generates the following error: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > scons: *** Two environments with different actions were specified for the same target: foo.o File "/home/my/project/SConstruct", line 6, in <module> </PRE ><P > This is because the two <CODE CLASS="function" >Program</CODE > calls have each implicitly told <SPAN CLASS="application" >SCons</SPAN > to generate an object file named <TT CLASS="filename" >foo.o</TT >, one with a <A HREF="#cv-CCFLAGS" ><CODE CLASS="envar" >$CCFLAGS</CODE ></A > value of <TT CLASS="literal" >-O2</TT > and one with a <A HREF="#cv-CCFLAGS" ><CODE CLASS="envar" >$CCFLAGS</CODE ></A > value of <TT CLASS="literal" >-g</TT >. <SPAN CLASS="application" >SCons</SPAN > can't just decide that one of them should take precedence over the other, so it generates the error. To avoid this problem, we must explicitly specify that each environment compile <TT CLASS="filename" >foo.c</TT > to a separately-named object file using the <A HREF="#b-Object" ><CODE CLASS="function" >Object</CODE ></A > builder, like so: </P ><PRE CLASS="programlisting" > opt = Environment(CCFLAGS = '-O2') dbg = Environment(CCFLAGS = '-g') o = opt.Object('foo-opt', 'foo.c') opt.Program(o) d = dbg.Object('foo-dbg', 'foo.c') dbg.Program(d) </PRE ><P > Notice that each call to the <CODE CLASS="function" >Object</CODE > builder returns a value, an internal <SPAN CLASS="application" >SCons</SPAN > object that represents the object file that will be built. We then use that object as input to the <CODE CLASS="function" >Program</CODE > builder. This avoids having to specify explicitly the object file name in multiple places, and makes for a compact, readable <TT CLASS="filename" >SConstruct</TT > file. Our <SPAN CLASS="application" >SCons</SPAN > output then looks like: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o foo-dbg.o -c -g foo.c cc -o foo-dbg foo-dbg.o cc -o foo-opt.o -c -O2 foo.c cc -o foo-opt foo-opt.o </PRE ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN1550" >7.2.6. Making Copies of <TT CLASS="literal" >Construction Environments</TT >: the <CODE CLASS="function" >Clone</CODE > Method</A ></H3 ><P > Sometimes you want more than one construction environment to share the same values for one or more variables. Rather than always having to repeat all of the common variables when you create each construction environment, you can use the <CODE CLASS="function" >Clone</CODE > method to create a copy of a construction environment. </P ><P > Like the <CODE CLASS="function" >Environment</CODE > call that creates a construction environment, the <CODE CLASS="function" >Clone</CODE > method takes <TT CLASS="literal" >construction variable</TT > assignments, which will override the values in the copied construction environment. For example, suppose we want to use <SPAN CLASS="application" >gcc</SPAN > to create three versions of a program, one optimized, one debug, and one with neither. We could do this by creating a "base" construction environment that sets <A HREF="#cv-CC" ><CODE CLASS="envar" >$CC</CODE ></A > to <SPAN CLASS="application" >gcc</SPAN >, and then creating two copies, one which sets <A HREF="#cv-CCFLAGS" ><CODE CLASS="envar" >$CCFLAGS</CODE ></A > for optimization and the other which sets <CODE CLASS="envar" >$CCFLAGS</CODE > for debugging: </P ><PRE CLASS="programlisting" > env = Environment(CC = 'gcc') opt = env.Clone(CCFLAGS = '-O2') dbg = env.Clone(CCFLAGS = '-g') env.Program('foo', 'foo.c') o = opt.Object('foo-opt', 'foo.c') opt.Program(o) d = dbg.Object('foo-dbg', 'foo.c') dbg.Program(d) </PRE ><P > Then our output would look like: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > gcc -o foo.o -c foo.c gcc -o foo foo.o gcc -o foo-dbg.o -c -g foo.c gcc -o foo-dbg foo-dbg.o gcc -o foo-opt.o -c -O2 foo.c gcc -o foo-opt foo-opt.o </PRE ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN1571" >7.2.7. Replacing Values: the <CODE CLASS="function" >Replace</CODE > Method</A ></H3 ><P > You can replace existing construction variable values using the <CODE CLASS="function" >Replace</CODE > method: </P ><PRE CLASS="programlisting" > env = Environment(CCFLAGS = '-DDEFINE1') env.Replace(CCFLAGS = '-DDEFINE2') env.Program('foo.c') </PRE ><P > The replacing value (<TT CLASS="literal" >-DDEFINE2</TT > in the above example) completely replaces the value in the construction environment: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o foo.o -c -DDEFINE2 foo.c cc -o foo foo.o </PRE ><P > You can safely call <CODE CLASS="function" >Replace</CODE > for construction variables that don't exist in the construction environment: </P ><PRE CLASS="programlisting" > env = Environment() env.Replace(NEW_VARIABLE = 'xyzzy') print "NEW_VARIABLE =", env['NEW_VARIABLE'] </PRE ><P > In this case, the construction variable simply gets added to the construction environment: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > NEW_VARIABLE = xyzzy scons: `.' is up to date. </PRE ><P > Because the variables aren't expanded until the construction environment is actually used to build the targets, and because <SPAN CLASS="application" >SCons</SPAN > function and method calls are order-independent, the last replacement "wins" and is used to build all targets, regardless of the order in which the calls to Replace() are interspersed with calls to builder methods: </P ><PRE CLASS="programlisting" > env = Environment(CCFLAGS = '-DDEFINE1') print "CCFLAGS =", env['CCFLAGS'] env.Program('foo.c') env.Replace(CCFLAGS = '-DDEFINE2') print "CCFLAGS =", env['CCFLAGS'] env.Program('bar.c') </PRE ><P > The timing of when the replacement actually occurs relative to when the targets get built becomes apparent if we run <SPAN CLASS="application" >scons</SPAN > without the <TT CLASS="literal" >-Q</TT > option: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons</KBD > scons: Reading SConscript files ... CCFLAGS = -DDEFINE1 CCFLAGS = -DDEFINE2 scons: done reading SConscript files. scons: Building targets ... cc -o bar.o -c -DDEFINE2 bar.c cc -o bar bar.o cc -o foo.o -c -DDEFINE2 foo.c cc -o foo foo.o scons: done building targets. </PRE ><P > Because the replacement occurs while the <TT CLASS="filename" >SConscript</TT > files are being read, the <A HREF="#cv-CCFLAGS" ><CODE CLASS="envar" >$CCFLAGS</CODE ></A > variable has already been set to <TT CLASS="literal" >-DDEFINE2</TT > by the time the <TT CLASS="filename" >foo.o</TT > target is built, even though the call to the <CODE CLASS="function" >Replace</CODE > method does not occur until later in the <TT CLASS="filename" >SConscript</TT > file. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN1603" >7.2.8. Setting Values Only If They're Not Already Defined: the <CODE CLASS="function" >SetDefault</CODE > Method</A ></H3 ><P > Sometimes it's useful to be able to specify that a construction variable should be set to a value only if the construction environment does not already have that variable defined You can do this with the <CODE CLASS="function" >SetDefault</CODE > method, which behaves similarly to the <CODE CLASS="function" >set_default</CODE > method of Python dictionary objects: </P ><PRE CLASS="programlisting" > env.SetDefault(SPECIAL_FLAG = '-extra-option') </PRE ><P > This is especially useful when writing your own <TT CLASS="literal" >Tool</TT > modules to apply variables to construction environments. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN1612" >7.2.9. Appending to the End of Values: the <CODE CLASS="function" >Append</CODE > Method</A ></H3 ><P > You can append a value to an existing construction variable using the <CODE CLASS="function" >Append</CODE > method: </P ><PRE CLASS="programlisting" > env = Environment(CCFLAGS = ['-DMY_VALUE']) env.Append(CCFLAGS = ['-DLAST']) env.Program('foo.c') </PRE ><P > <SPAN CLASS="application" >SCons</SPAN > then supplies both the <TT CLASS="literal" >-DMY_VALUE</TT > and <TT CLASS="literal" >-DLAST</TT > flags when compiling the object file: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o foo.o -c -DMY_VALUE -DLAST foo.c cc -o foo foo.o </PRE ><P > If the construction variable doesn't already exist, the <CODE CLASS="function" >Append</CODE > method will create it: </P ><PRE CLASS="programlisting" > env = Environment() env.Append(NEW_VARIABLE = 'added') print "NEW_VARIABLE =", env['NEW_VARIABLE'] </PRE ><P > Which yields: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > NEW_VARIABLE = added scons: `.' is up to date. </PRE ><P > Note that the <CODE CLASS="function" >Append</CODE > function tries to be "smart" about how the new value is appended to the old value. If both are strings, the previous and new strings are simply concatenated. Similarly, if both are lists, the lists are concatenated. If, however, one is a string and the other is a list, the string is added as a new element to the list. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN1632" >7.2.10. Appending Unique Values: the <CODE CLASS="function" >AppendUnique</CODE > Method</A ></H3 ><P > Some times it's useful to add a new value only if the existing construction variable doesn't already contain the value. This can be done using the <CODE CLASS="function" >AppendUnique</CODE > method: </P ><PRE CLASS="programlisting" > env.AppendUnique(CCFLAGS=['-g']) </PRE ><P > In the above example, the <TT CLASS="literal" >-g</TT > would be added only if the <CODE CLASS="envar" >$CCFLAGS</CODE > variable does not already contain a <TT CLASS="literal" >-g</TT > value. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN1642" >7.2.11. Appending to the Beginning of Values: the <CODE CLASS="function" >Prepend</CODE > Method</A ></H3 ><P > You can append a value to the beginning of an existing construction variable using the <CODE CLASS="function" >Prepend</CODE > method: </P ><PRE CLASS="programlisting" > env = Environment(CCFLAGS = ['-DMY_VALUE']) env.Prepend(CCFLAGS = ['-DFIRST']) env.Program('foo.c') </PRE ><P > <SPAN CLASS="application" >SCons</SPAN > then supplies both the <TT CLASS="literal" >-DFIRST</TT > and <TT CLASS="literal" >-DMY_VALUE</TT > flags when compiling the object file: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o foo.o -c -DFIRST -DMY_VALUE foo.c cc -o foo foo.o </PRE ><P > If the construction variable doesn't already exist, the <CODE CLASS="function" >Prepend</CODE > method will create it: </P ><PRE CLASS="programlisting" > env = Environment() env.Prepend(NEW_VARIABLE = 'added') print "NEW_VARIABLE =", env['NEW_VARIABLE'] </PRE ><P > Which yields: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > NEW_VARIABLE = added scons: `.' is up to date. </PRE ><P > Like the <CODE CLASS="function" >Append</CODE > function, the <CODE CLASS="function" >Prepend</CODE > function tries to be "smart" about how the new value is appended to the old value. If both are strings, the previous and new strings are simply concatenated. Similarly, if both are lists, the lists are concatenated. If, however, one is a string and the other is a list, the string is added as a new element to the list. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN1663" >7.2.12. Prepending Unique Values: the <CODE CLASS="function" >PrependUnique</CODE > Method</A ></H3 ><P > Some times it's useful to add a new value to the beginning of a construction variable only if the existing value doesn't already contain the to-be-added value. This can be done using the <CODE CLASS="function" >PrependUnique</CODE > method: </P ><PRE CLASS="programlisting" > env.PrependUnique(CCFLAGS=['-g']) </PRE ><P > In the above example, the <TT CLASS="literal" >-g</TT > would be added only if the <CODE CLASS="envar" >$CCFLAGS</CODE > variable does not already contain a <TT CLASS="literal" >-g</TT > value. </P ></DIV ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="sect-execution-environments" >7.3. Controlling the Execution Environment for Issued Commands</A ></H2 ><P > When <SPAN CLASS="application" >SCons</SPAN > builds a target file, it does not execute the commands with the same external environment that you used to execute <SPAN CLASS="application" >SCons</SPAN >. Instead, it uses the dictionary stored in the <A HREF="#cv-ENV" ><CODE CLASS="envar" >$ENV</CODE ></A > construction variable as the external environment for executing commands. </P ><P > The most important ramification of this behavior is that the <CODE CLASS="varname" >PATH</CODE > environment variable, which controls where the operating system will look for commands and utilities, is not the same as in the external environment from which you called <SPAN CLASS="application" >SCons</SPAN >. This means that <SPAN CLASS="application" >SCons</SPAN > will not, by default, necessarily find all of the tools that you can execute from the command line. </P ><P > The default value of the <CODE CLASS="varname" >PATH</CODE > environment variable on a POSIX system is <TT CLASS="literal" >/usr/local/bin:/bin:/usr/bin</TT >. The default value of the <CODE CLASS="varname" >PATH</CODE > environment variable on a Windows system comes from the Windows registry value for the command interpreter. If you want to execute any commands--compilers, linkers, etc.--that are not in these default locations, you need to set the <CODE CLASS="varname" >PATH</CODE > value in the <CODE CLASS="envar" >$ENV</CODE > dictionary in your construction environment. </P ><P > The simplest way to do this is to initialize explicitly the value when you create the construction environment; this is one way to do that: </P ><PRE CLASS="programlisting" > path = ['/usr/local/bin', '/bin', '/usr/bin'] env = Environment(ENV = {'PATH' : path}) </PRE ><P > Assign a dictionary to the <CODE CLASS="envar" >$ENV</CODE > construction variable in this way completely resets the external environment so that the only variable that will be set when external commands are executed will be the <CODE CLASS="varname" >PATH</CODE > value. If you want to use the rest of the values in <CODE CLASS="envar" >$ENV</CODE > and only set the value of <CODE CLASS="varname" >PATH</CODE >, the most straightforward way is probably: </P ><PRE CLASS="programlisting" > env['ENV']['PATH'] = ['/usr/local/bin', '/bin', '/usr/bin'] </PRE ><P > Note that <SPAN CLASS="application" >SCons</SPAN > does allow you to define the directories in the <CODE CLASS="varname" >PATH</CODE > in a string, separated by the pathname-separator character for your system (':' on POSIX systems, ';' on Windows): </P ><PRE CLASS="programlisting" > env['ENV']['PATH'] = '/usr/local/bin:/bin:/usr/bin' </PRE ><P > But doing so makes your <TT CLASS="filename" >SConscript</TT > file less portable, (although in this case that may not be a huge concern since the directories you list are likley system-specific, anyway). </P ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN1704" >7.3.1. Propagating <CODE CLASS="varname" >PATH</CODE > From the External Environment</A ></H3 ><P > You may want to propagate the external <CODE CLASS="varname" >PATH</CODE > to the execution environment for commands. You do this by initializing the <CODE CLASS="varname" >PATH</CODE > variable with the <CODE CLASS="varname" >PATH</CODE > value from the <TT CLASS="literal" >os.environ</TT > dictionary, which is Python's way of letting you get at the external environment: </P ><PRE CLASS="programlisting" > import os env = Environment(ENV = {'PATH' : os.environ['PATH']}) </PRE ><P > Alternatively, you may find it easier to just propagate the entire external environment to the execution environment for commands. This is simpler to code than explicity selecting the <CODE CLASS="varname" >PATH</CODE > value: </P ><PRE CLASS="programlisting" > import os env = Environment(ENV = os.environ) </PRE ><P > Either of these will guarantee that <SPAN CLASS="application" >SCons</SPAN > will be able to execute any command that you can execute from the command line. The drawback is that the build can behave differently if it's run by people with different <CODE CLASS="varname" >PATH</CODE > values in their environment--for example, if both the <TT CLASS="literal" >/bin</TT > and <TT CLASS="literal" >/usr/local/bin</TT > directories have different <SPAN CLASS="application" >cc</SPAN > commands, then which one will be used to compile programs will depend on which directory is listed first in the user's <CODE CLASS="varname" >PATH</CODE > variable. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN1723" >7.3.2. Adding to <CODE CLASS="varname" >PATH</CODE > Values in the Execution Environment</A ></H3 ><P > One of the most common requirements for manipulating a variable in the execution environment is to add one or more custom directories to a search like the <CODE CLASS="envar" >$PATH</CODE > variable on Linux or POSIX systems, or the <CODE CLASS="envar" >%PATH%</CODE > variable on Windows, so that a locally-installed compiler or other utility can be found when <SPAN CLASS="application" >SCons</SPAN > tries to execute it to update a target. <SPAN CLASS="application" >SCons</SPAN > provides <CODE CLASS="function" >PrependENVPath</CODE > and <CODE CLASS="function" >AppendENVPath</CODE > functions to make adding things to execution variables convenient. You call these functions by specifying the variable to which you want the value added, and then value itself. So to add some <TT CLASS="filename" >/usr/local</TT > directories to the <CODE CLASS="envar" >$PATH</CODE > and <CODE CLASS="envar" >$LIB</CODE > variables, you might: </P ><PRE CLASS="programlisting" > env = Environment(ENV = os.environ) env.PrependENVPath('PATH', '/usr/local/bin') env.AppendENVPath('LIB', '/usr/local/lib') </PRE ><P > Note that the added values are strings, and if you want to add multiple directories to a variable like <CODE CLASS="envar" >$PATH</CODE >, you must include the path separate character (<TT CLASS="literal" >:</TT > on Linux or POSIX, <TT CLASS="literal" >;</TT > on Windows) in the string. </P ></DIV ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-mergeflags" ></A >Chapter 8. Merging Options into the Environment: the <CODE CLASS="function" >MergeFlags</CODE > Function</H1 ><P > <SPAN CLASS="application" >SCons</SPAN > construction environments have a <CODE CLASS="function" >MergeFlags</CODE > method that merges a dictionary of values into the construction environment. <CODE CLASS="function" >MergeFlags</CODE > treats each value in the dictionary as a list of options such as one might pass to a command (such as a compiler or linker). <CODE CLASS="function" >MergeFlags</CODE > will not duplicate an option if it already exists in the construction environment variable. </P ><P > <CODE CLASS="function" >MergeFlags</CODE > tries to be intelligent about merging options. When merging options to any variable whose name ends in <CODE CLASS="varname" >PATH</CODE >, <CODE CLASS="function" >MergeFlags</CODE > keeps the leftmost occurrence of the option, because in typical lists of directory paths, the first occurrence "wins." When merging options to any other variable name, <CODE CLASS="function" >MergeFlags</CODE > keeps the rightmost occurrence of the option, because in a list of typical command-line options, the last occurrence "wins." </P ><PRE CLASS="programlisting" > env = Environment() env.Append(CCFLAGS = '-option -O3 -O1') flags = { 'CCFLAGS' : '-whatever -O3' } env.MergeFlags(flags) print env['CCFLAGS'] </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > ['-option', '-O1', '-whatever', '-O3'] scons: `.' is up to date. </PRE ><P > Note that the default value for <A HREF="#cv-CCFLAGS" ><CODE CLASS="envar" >$CCFLAGS</CODE ></A > is an internal <SPAN CLASS="application" >SCons</SPAN > object which automatically converts the options we specified as a string into a list. </P ><PRE CLASS="programlisting" > env = Environment() env.Append(CPPPATH = ['/include', '/usr/local/include', '/usr/include']) flags = { 'CPPPATH' : ['/usr/opt/include', '/usr/local/include'] } env.MergeFlags(flags) print env['CPPPATH'] </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > ['/include', '/usr/local/include', '/usr/include', '/usr/opt/include'] scons: `.' is up to date. </PRE ><P > Note that the default value for <A HREF="#cv-CPPPATH" ><CODE CLASS="envar" >$CPPPATH</CODE ></A > is a normal Python list, so we must specify its values as a list in the dictionary we pass to the <CODE CLASS="function" >MergeFlags</CODE > function. </P ><P > If <CODE CLASS="function" >MergeFlags</CODE > is passed anything other than a dictionary, it calls the <CODE CLASS="function" >ParseFlags</CODE > method to convert it into a dictionary. </P ><PRE CLASS="programlisting" > env = Environment() env.Append(CCFLAGS = '-option -O3 -O1') env.Append(CPPPATH = ['/include', '/usr/local/include', '/usr/include']) env.MergeFlags('-whatever -I/usr/opt/include -O3 -I/usr/local/include') print env['CCFLAGS'] print env['CPPPATH'] </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > ['-option', '-O1', '-whatever', '-O3'] ['/include', '/usr/local/include', '/usr/include', '/usr/opt/include'] scons: `.' is up to date. </PRE ><P > In the combined example above, <CODE CLASS="function" >ParseFlags</CODE > has sorted the options into their corresponding variables and returned a dictionary for <CODE CLASS="function" >MergeFlags</CODE > to apply to the construction variables in the specified construction environment. </P ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-parseflags" ></A >Chapter 9. Separating Compile Arguments into their Variables: the <CODE CLASS="function" >ParseFlags</CODE > Function</H1 ><P > <SPAN CLASS="application" >SCons</SPAN > has a bewildering array of construction variables for different types of options when building programs. Sometimes you may not know exactly which variable should be used for a particular option. </P ><P > <SPAN CLASS="application" >SCons</SPAN > construction environments have a <CODE CLASS="function" >ParseFlags</CODE > method that takes a set of typical command-line options and distrbutes them into the appropriate construction variables. Historically, it was created to support the <CODE CLASS="function" >ParseConfig</CODE > method, so it focuses on options used by the GNU Compiler Collection (GCC) for the C and C++ toolchains. </P ><P > <CODE CLASS="function" >ParseFlags</CODE > returns a dictionary containing the options distributed into their respective construction variables. Normally, this dictionary would be passed to <CODE CLASS="function" >MergeFlags</CODE > to merge the options into a <TT CLASS="literal" >construction environment</TT >, but the dictionary can be edited if desired to provide additional functionality. (Note that if the flags are not going to be edited, calling <CODE CLASS="function" >MergeFlags</CODE > with the options directly will avoid an additional step.) </P ><PRE CLASS="programlisting" > env = Environment() d = env.ParseFlags("-I/opt/include -L/opt/lib -lfoo") l = d.items() l.sort() for k,v in l: if v: print k, v env.MergeFlags(d) env.Program('f1.c') </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > CPPPATH ['/opt/include'] LIBPATH ['/opt/lib'] LIBS ['foo'] cc -o f1.o -c -I/opt/include f1.c cc -o f1 f1.o -L/opt/lib -lfoo </PRE ><P > Note that if the options are limited to generic types like those above, they will be correctly translated for other platform types: </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >scons -Q</KBD > CPPPATH ['/opt/include'] LIBPATH ['/opt/lib'] LIBS ['foo'] cl /nologo /I\opt\include /c f1.c /Fof1.obj link /nologo /OUT:f1.exe /LIBPATH:\opt\lib foo.lib f1.obj </PRE ><P > Since the assumption is that the flags are used for the GCC toolchain, unrecognized flags are placed in <A HREF="#cv-CCFLAGS" ><CODE CLASS="envar" >$CCFLAGS</CODE ></A > so they will be used for both C and C++ compiles: </P ><PRE CLASS="programlisting" > env = Environment() d = env.ParseFlags("-whatever") l = d.items() l.sort() for k,v in l: if v: print k, v env.MergeFlags(d) env.Program('f1.c') </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > CCFLAGS -whatever cc -o f1.o -c -whatever f1.c cc -o f1 f1.o </PRE ><P > <CODE CLASS="function" >ParseFlags</CODE > will also accept a (recursive) list of strings as input; the list is flattened before the strings are processed: </P ><PRE CLASS="programlisting" > env = Environment() d = env.ParseFlags(["-I/opt/include", ["-L/opt/lib", "-lfoo"]]) l = d.items() l.sort() for k,v in l: if v: print k, v env.MergeFlags(d) env.Program('f1.c') </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > CPPPATH ['/opt/include'] LIBPATH ['/opt/lib'] LIBS ['foo'] cc -o f1.o -c -I/opt/include f1.c cc -o f1 f1.o -L/opt/lib -lfoo </PRE ><P > If a string begins with a "!" (an exclamation mark, often called a bang), the string is passed to the shell for execution. The output of the command is then parsed: </P ><PRE CLASS="programlisting" > env = Environment() d = env.ParseFlags(["!echo -I/opt/include", "!echo -L/opt/lib", "-lfoo"]) l = d.items() l.sort() for k,v in l: if v: print k, v env.MergeFlags(d) env.Program('f1.c') </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > CPPPATH ['/opt/include'] LIBPATH ['/opt/lib'] LIBS ['foo'] cc -o f1.o -c -I/opt/include f1.c cc -o f1 f1.o -L/opt/lib -lfoo </PRE ><P > <CODE CLASS="function" >ParseFlags</CODE > is regularly updated for new options; consult the man page for details about those currently recognized. </P ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-parseconfig" ></A >Chapter 10. Finding Installed Library Information: the <CODE CLASS="function" >ParseConfig</CODE > Function</H1 ><P > Configuring the right options to build programs to work with libraries--especially shared libraries--that are available on POSIX systems can be very complicated. To help this situation, various utilies with names that end in <TT CLASS="filename" >config</TT > return the command-line options for the GNU Compiler Collection (GCC) that are needed to use these libraries; for example, the command-line options to use a library named <TT CLASS="filename" >lib</TT > would be found by calling a utility named <TT CLASS="filename" >lib-config</TT >. </P ><P > A more recent convention is that these options are available from the generic <TT CLASS="filename" >pkg-config</TT > program, which has common framework, error handling, and the like, so that all the package creator has to do is provide the set of strings for his particular package. </P ><P > <SPAN CLASS="application" >SCons</SPAN > construction environments have a <CODE CLASS="function" >ParseConfig</CODE > method that executes a <TT CLASS="filename" >*config</TT > utility (either <TT CLASS="filename" >pkg-config</TT > or a more specific utility) and configures the appropriate construction variables in the environment based on the command-line options returned by the specified command. </P ><PRE CLASS="programlisting" > env = Environment() env['CPPPATH'] = ['/lib/compat'] env.ParseConfig("pkg-config x11 --cflags --libs") print env['CPPPATH'] </PRE ><P > <SPAN CLASS="application" >SCons</SPAN > will execute the specified command string, parse the resultant flags, and add the flags to the appropriate environment variables. </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > ['/lib/compat', '/usr/X11/include'] scons: `.' is up to date. </PRE ><P > In the example above, <SPAN CLASS="application" >SCons</SPAN > has added the include directory to <CODE CLASS="varname" >CPPPATH</CODE >. (Depending upon what other flags are emitted by the <TT CLASS="filename" >pkg-config</TT > command, other variables may have been extended as well.) </P ><P > Note that the options are merged with existing options using the <CODE CLASS="function" >MergeFlags</CODE > method, so that each option only occurs once in the construction variable: </P ><PRE CLASS="programlisting" > env = Environment() env.ParseConfig("pkg-config x11 --cflags --libs") env.ParseConfig("pkg-config x11 --cflags --libs") print env['CPPPATH'] </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > ['/usr/X11/include'] scons: `.' is up to date. </PRE ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-output" ></A >Chapter 11. Controlling Build Output</H1 ><P > A key aspect of creating a usable build configuration is providing good output from the build so its users can readily understand what the build is doing and get information about how to control the build. <SPAN CLASS="application" >SCons</SPAN > provides several ways of controlling output from the build configuration to help make the build more useful and understandable. </P ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN1846" >11.1. Providing Build Help: the <CODE CLASS="function" >Help</CODE > Function</A ></H2 ><P > It's often very useful to be able to give users some help that describes the specific targets, build options, etc., that can be used for your build. <SPAN CLASS="application" >SCons</SPAN > provides the <CODE CLASS="function" >Help</CODE > function to allow you to specify this help text: </P ><PRE CLASS="programlisting" > Help(""" Type: 'scons program' to build the production program, 'scons debug' to build the debug version. """) </PRE ><P > (Note the above use of the Python triple-quote syntax, which comes in very handy for specifying multi-line strings like help text.) </P ><P > When the <TT CLASS="filename" >SConstruct</TT > or <TT CLASS="filename" >SConscript</TT > files contain such a call to the <CODE CLASS="function" >Help</CODE > function, the specified help text will be displayed in response to the <SPAN CLASS="application" >SCons</SPAN > <TT CLASS="literal" >-h</TT > option: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -h</KBD > scons: Reading SConscript files ... scons: done reading SConscript files. Type: 'scons program' to build the production program, 'scons debug' to build the debug version. Use scons -H for help about command-line options. </PRE ><P > The <TT CLASS="filename" >SConscript</TT > files may contain multiple calls to the <CODE CLASS="function" >Help</CODE > function, in which case the specified text(s) will be concatenated when displayed. This allows you to split up the help text across multiple <TT CLASS="filename" >SConscript</TT > files. In this situation, the order in which the <TT CLASS="filename" >SConscript</TT > files are called will determine the order in which the <CODE CLASS="function" >Help</CODE > functions are called, which will determine the order in which the various bits of text will get concatenated. </P ><P > Another use would be to make the help text conditional on some variable. For example, suppose you only want to display a line about building a Windows-only version of a program when actually run on Windows. The following <TT CLASS="filename" >SConstruct</TT > file: </P ><PRE CLASS="programlisting" > env = Environment() Help("\nType: 'scons program' to build the production program.\n") if env['PLATFORM'] == 'win32': Help("\nType: 'scons windebug' to build the Windows debug version.\n") </PRE ><P > Will display the complete help text on Windows: </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >scons -h</KBD > scons: Reading SConscript files ... scons: done reading SConscript files. Type: 'scons program' to build the production program. Type: 'scons windebug' to build the Windows debug version. Use scons -H for help about command-line options. </PRE ><P > But only show the relevant option on a Linux or UNIX system: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -h</KBD > scons: Reading SConscript files ... scons: done reading SConscript files. Type: 'scons program' to build the production program. Use scons -H for help about command-line options. </PRE ><P > If there is no <CODE CLASS="function" >Help</CODE > text in the <TT CLASS="filename" >SConstruct</TT > or <TT CLASS="filename" >SConscript</TT > files, <SPAN CLASS="application" >SCons</SPAN > will revert to displaying its standard list that describes the <SPAN CLASS="application" >SCons</SPAN > command-line options. This list is also always displayed whenever the <TT CLASS="literal" >-H</TT > option is used. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN1884" >11.2. Controlling How <SPAN CLASS="application" >SCons</SPAN > Prints Build Commands: the <CODE CLASS="envar" >$*COMSTR</CODE > Variables</A ></H2 ><P > Sometimes the commands executed to compile object files or link programs (or build other targets) can get very long, long enough to make it difficult for users to distinguish error messages or other important build output from the commands themselves. All of the default <CODE CLASS="envar" >$*COM</CODE > variables that specify the command lines used to build various types of target files have a corresponding <CODE CLASS="envar" >$*COMSTR</CODE > variable that can be set to an alternative string that will be displayed when the target is built. </P ><P > For example, suppose you want to have <SPAN CLASS="application" >SCons</SPAN > display a <TT CLASS="literal" >"Compiling"</TT > message whenever it's compiling an object file, and a <TT CLASS="literal" >"Linking"</TT > when it's linking an executable. You could write a <TT CLASS="filename" >SConstruct</TT > file that looks like: </P ><PRE CLASS="programlisting" > env = Environment(CCCOMSTR = "Compiling $TARGET", LINKCOMSTR = "Linking $TARGET") env.Program('foo.c') </PRE ><P > Which would then yield the output: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > Compiling foo.o Linking foo </PRE ><P > <SPAN CLASS="application" >SCons</SPAN > performs complete variable substitution on <CODE CLASS="envar" >$*COMSTR</CODE > variables, so they have access to all of the standard variables like <CODE CLASS="envar" >$TARGET</CODE > <CODE CLASS="envar" >$SOURCES</CODE >, etc., as well as any construction variables that happen to be configured in the construction environment used to build a specific target. </P ><P > Of course, sometimes it's still important to be able to see the exact command that <SPAN CLASS="application" >SCons</SPAN > will execute to build a target. For example, you may simply need to verify that <SPAN CLASS="application" >SCons</SPAN > is configured to supply the right options to the compiler, or a developer may want to cut-and-paste a comiloe command to add a few options for a custom test. </P ><P > One common way to give users control over whether or not <SPAN CLASS="application" >SCons</SPAN > should print the actual command line or a short, configured summary is to add support for a <CODE CLASS="varname" >VERBOSE</CODE > command-line variable to your <TT CLASS="filename" >SConstruct</TT > file. A simple configuration for this might look like: </P ><PRE CLASS="programlisting" > env = Environment() if ARGUMENTS.get('VERBOSE') != "1': env['CCCOMSTR'] = "Compiling $TARGET" env['LINKCOMSTR'] = "Linking $TARGET" env.Program('foo.c') </PRE ><P > By only setting the appropriate <CODE CLASS="envar" >$*COMSTR</CODE > variables if the user specifies <TT CLASS="literal" >VERBOSE=1</TT > on the command line, the user has control over how <SPAN CLASS="application" >SCons</SPAN > displays these particular command lines: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > Compiling foo.o Linking foo % <KBD CLASS="userinput" >scons -Q -c</KBD > Removed foo.o Removed foo % <KBD CLASS="userinput" >scons -Q VERBOSE=1</KBD > cc -o foo.o -c foo.c cc -o foo foo.o </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN1921" >11.3. Providing Build Progress Output: the <CODE CLASS="function" >Progress</CODE > Function</A ></H2 ><P > Another aspect of providing good build output is to give the user feedback about what <SPAN CLASS="application" >SCons</SPAN > is doing even when nothing is being built at the moment. This can be especially true for large builds when most of the targets are already up-to-date. Because <SPAN CLASS="application" >SCons</SPAN > can take a long time making absolutely sure that every target is, in fact, up-to-date with respect to a lot of dependency files, it can be easy for users to mistakenly conclude that <SPAN CLASS="application" >SCons</SPAN > is hung or that there is some other problem with the build. </P ><P > One way to deal with this perception is to configure <SPAN CLASS="application" >SCons</SPAN > to print something to let the user know what it's "thinking about." The <CODE CLASS="function" >Progress</CODE > function allows you to specify a string that will be printed for every file that <SPAN CLASS="application" >SCons</SPAN > is "considering" while it is traversing the dependency graph to decide what targets are or are not up-to-date. </P ><PRE CLASS="programlisting" > Progress('Evaluating $TARGET\n') Program('f1.c') Program('f2.c') </PRE ><P > Note that the <CODE CLASS="function" >Progress</CODE > function does not arrange for a newline to be printed automatically at the end of the string (as does the Python <TT CLASS="literal" >print</TT > statement), and we must specify the <TT CLASS="literal" >\n</TT > that we want printed at the end of the configured string. This configuration, then, will have <SPAN CLASS="application" >SCons</SPAN > print that it is <TT CLASS="literal" >Evaluating</TT > each file that it encounters in turn as it traverses the dependency graph: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > Evaluating SConstruct Evaluating f1.c Evaluating f1.o cc -o f1.o -c f1.c Evaluating f1 cc -o f1 f1.o Evaluating f2.c Evaluating f2.o cc -o f2.o -c f2.c Evaluating f2 cc -o f2 f2.o Evaluating . </PRE ><P > Of course, normally you don't want to add all of these additional lines to your build output, as that can make it difficult for the user to find errors or other important messages. A more useful way to display this progress might be to have the file names printed directly to the user's screen, not to the same standard output stream where build output is printed, and to use a carriage return character (<TT CLASS="literal" >\r</TT >) so that each file name gets re-printed on the same line. Such a configuration would look like: </P ><PRE CLASS="programlisting" > Progress('$TARGET\r', file=open('/dev/tty', 'w'), overwrite=True) Program('f1.c') Program('f2.c') </PRE ><P > Note that we also specified the <TT CLASS="literal" >overwrite=True</TT > argument to the <CODE CLASS="function" >Progress</CODE > function, which causes <SPAN CLASS="application" >SCons</SPAN > to "wipe out" the previous string with space characters before printing the next <CODE CLASS="function" >Progress</CODE > string. Without the <TT CLASS="literal" >overwrite=True</TT > argument, a shorter file name would not overwrite all of the charactes in a longer file name that precedes it, making it difficult to tell what the actual file name is on the output. Also note that we opened up the <TT CLASS="filename" >/dev/tty</TT > file for direct access (on POSIX) to the user's screen. On Windows, the equivalent would be to open the <TT CLASS="filename" >con:</TT > file name. </P ><P > Also, it's important to know that although you can use <TT CLASS="literal" >$TARGET</TT > to substitute the name of the node in the string, the <CODE CLASS="function" >Progress</CODE > function does <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > perform general variable substitution (because there's not necessarily a construction environment involved in evaluating a node like a source file, for example). </P ><P > You can also specify a list of strings to the <CODE CLASS="function" >Progress</CODE > function, in which case <SPAN CLASS="application" >SCons</SPAN > will display each string in turn. This can be used to implement a "spinner" by having <SPAN CLASS="application" >SCons</SPAN > cycle through a sequence of strings: </P ><PRE CLASS="programlisting" > Progress(['-\r', '\\\r', '|\r', '/\r'], interval=5) Program('f1.c') Program('f2.c') </PRE ><P > Note that here we have also used the <TT CLASS="literal" >interval=</TT > keyword argument to have <SPAN CLASS="application" >SCons</SPAN > only print a new "spinner" string once every five evaluated nodes. Using an <TT CLASS="literal" >interval=</TT > count, even with strings that use <TT CLASS="literal" >$TARGET</TT > like our examples above, can be a good way to lessen the work that <SPAN CLASS="application" >SCons</SPAN > expends printing <CODE CLASS="function" >Progress</CODE > strings, while still giving the user feedback that indicates <SPAN CLASS="application" >SCons</SPAN > is still working on evaluating the build. </P ><P > Lastly, you can have direct control over how to print each evaluated node by passing a Python function (or other Python callable) to the <CODE CLASS="function" >Progress</CODE > function. Your function will be called for each evaluated node, allowing you to implement more sophisticated logic like adding a counter: </P ><PRE CLASS="programlisting" > screen = open('/dev/tty', 'w') count = 0 def progress_function(node) count += 1 screen.write('Node %4d: %s\r' % (count, node)) Progress(progress_function) </PRE ><P > Of course, if you choose, you could completely ignore the <CODE CLASS="varname" >node</CODE > argument to the function, and just print a count, or anything else you wish. </P ><P > (Note that there's an obvious follow-on question here: how would you find the total number of nodes that <SPAN CLASS="emphasis" ><I CLASS="emphasis" >will be</I ></SPAN > evaluated so you can tell the user how close the build is to finishing? Unfortunately, in the general case, there isn't a good way to do that, short of having <SPAN CLASS="application" >SCons</SPAN > evaluate its dependency graph twice, first to count the total and the second time to actually build the targets. This would be necessary because you can't know in advance which target(s) the user actually requested to be built. The entire build may consist of thousands of Nodes, for example, but maybe the user specifically requested that only a single object file be built.) </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN1977" >11.4. Printing Detailed Build Status: the <CODE CLASS="function" >GetBuildFailures</CODE > Function</A ></H2 ><P > SCons, like most build tools, returns zero status to the shell on success and nonzero status on failure. Sometimes it's useful to give more information about the build status at the end of the run, for instance to print an informative message, send an email, or page the poor slob who broke the build. </P ><P > SCons provides a <CODE CLASS="function" >GetBuildFailures</CODE > method that you can use in a python <CODE CLASS="function" >atexit</CODE > function to get a list of objects describing the actions that failed while attempting to build targets. There can be more than one if you're using <TT CLASS="literal" >-j</TT >. Here's a simple example: </P ><PRE CLASS="programlisting" > import atexit def print_build_failures(): from SCons.Script import GetBuildFailures for bf in GetBuildFailures(): print "%s failed: %s" % (bf.node, bf.errstr) atexit.register(print_build_failures) </PRE ><P > The <CODE CLASS="function" >atexit.register</CODE > call registers <CODE CLASS="function" >print_build_failures</CODE > as an <CODE CLASS="function" >atexit</CODE > callback, to be called before <SPAN CLASS="application" >SCons</SPAN > exits. When that function is called, it calls <CODE CLASS="function" >GetBuildFailures</CODE > to fetch the list of failed objects. See the man page for the detailed contents of the returned objects; some of the more useful attributes are <TT CLASS="literal" >.node</TT >, <TT CLASS="literal" >.errstr</TT >, <TT CLASS="literal" >.filename</TT >, and <TT CLASS="literal" >.command</TT >. The <TT CLASS="literal" >filename</TT > is not necessarily the same file as the <TT CLASS="literal" >node</TT >; the <TT CLASS="literal" >node</TT > is the target that was being built when the error occurred, while the <TT CLASS="literal" >filename</TT >is the file or dir that actually caused the error. Note: only call <CODE CLASS="function" >GetBuildFailures</CODE > at the end of the build; calling it at any other time is undefined. </P ><P > Here is a more complete example showing how to turn each element of <CODE CLASS="function" >GetBuildFailures</CODE > into a string: </P ><PRE CLASS="programlisting" > # Make the build fail if we pass fail=1 on the command line if ARGUMENTS.get('fail', 0): Command('target', 'source', ['/bin/false']) def bf_to_str(bf): """Convert an element of GetBuildFailures() to a string in a useful way.""" import SCons.Errors if bf is None: # unknown targets product None in list return '(unknown tgt)' elif isinstance(bf, SCons.Errors.StopError): return str(bf) elif bf.node: return str(bf.node) + ': ' + bf.errstr elif bf.filename: return bf.filename + ': ' + bf.errstr return 'unknown failure: ' + bf.errstr import atexit def build_status(): """Convert the build status to a 2-tuple, (status, msg).""" from SCons.Script import GetBuildFailures bf = GetBuildFailures() if bf: # bf is normally a list of build failures; if an element is None, # it's because of a target that scons doesn't know anything about. status = 'failed' failures_message = "\n".join(["Failed building %s" % bf_to_str(x) for x in bf if x is not None]) else: # if bf is None, the build completed successfully. status = 'ok' failures_message = '' return (status, failures_message) def display_build_status(): """Display the build status. Called by atexit. Here you could do all kinds of complicated things.""" status, failures_message = build_status() if status == 'failed': print "FAILED!!!!" # could display alert, ring bell, etc. elif status == 'ok': print "Build succeeded." print failures_message atexit.register(display_build_status) </PRE ><P > When this runs, you'll see the appropriate output: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > scons: `.' is up to date. Build succeeded. % <KBD CLASS="userinput" >scons -Q fail=1</KBD > scons: *** Source `source' not found, needed by target `target'. Stop. FAILED!!!! Failed building Source `source' not found, needed by target `target'. </PRE ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-command-line" ></A >Chapter 12. Controlling a Build From the Command Line</H1 ><P > <SPAN CLASS="application" >SCons</SPAN > provides a number of ways for the writer of the <TT CLASS="filename" >SConscript</TT > files to give the users who will run <SPAN CLASS="application" >SCons</SPAN > a great deal of control over the build execution. The arguments that the user can specify on the command line are broken down into three types: </P ><P ></P ><DIV CLASS="variablelist" ><DL ><DT >Options</DT ><DD ><P > Command-line options always begin with one or two <TT CLASS="literal" >-</TT > (hyphen) characters. <SPAN CLASS="application" >SCons</SPAN > provides ways for you to examind and set options values from within your <TT CLASS="filename" >SConscript</TT > files, as well as the ability to define your own custom options. See <A HREF="#sect-command-line-options" >Section 12.1</A >, below. </P ></DD ><DT >Variables</DT ><DD ><P > Any command-line argument containing an <TT CLASS="literal" >=</TT > (equal sign) is considered a variable setting with the form <CODE CLASS="varname" >variable</CODE >=<CODE CLASS="varname" >value</CODE > <SPAN CLASS="application" >SCons</SPAN > provides direct access to all of the command-line variable settings, the ability to apply command-line variable settings to construction environments, and functions for configuring specific types of variables (Boolean values, path names, etc.) with automatic validation of the user's specified values. See <A HREF="#sect-command-line-variables" >Section 12.2</A >, below. </P ></DD ><DT >Targets</DT ><DD ><P > Any command-line argument that is not an option or a variable setting (does not begin with a hyphen and does not contain an equal sign) is considered a target that the user (presumably) wants <SPAN CLASS="application" >SCons</SPAN > to build. A list of Node objects representing the target or targets to build. <SPAN CLASS="application" >SCons</SPAN > provides access to the list of specified targets, as well as ways to set the default list of targets from within the <TT CLASS="filename" >SConscript</TT > files. See <A HREF="#sect-command-line-targets" >Section 12.3</A >, below. </P ></DD ></DL ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="sect-command-line-options" >12.1. Command-Line Options</A ></H2 ><P > <SPAN CLASS="application" >SCons</SPAN > has many <SPAN CLASS="emphasis" ><I CLASS="emphasis" >command-line options</I ></SPAN > that control its behavior. A <SPAN CLASS="application" >SCons</SPAN > <SPAN CLASS="emphasis" ><I CLASS="emphasis" >command-line option</I ></SPAN > always begins with one or two <TT CLASS="literal" >-</TT > (hyphen) characters. </P ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN2048" >12.1.1. Not Having to Specify Command-Line Options Each Time: the <CODE CLASS="varname" >SCONSFLAGS</CODE > Environment Variable</A ></H3 ><P > Users may find themselves supplying the same command-line options every time they run <SPAN CLASS="application" >SCons</SPAN >. For example, you might find it saves time to specify a value of <TT CLASS="literal" >-j 2</TT > to have <SPAN CLASS="application" >SCons</SPAN > run up to two build commands in parallel. To avoid having to type <TT CLASS="literal" >-j 2</TT > by hand every time, you can set the external environment variable <CODE CLASS="varname" >SCONSFLAGS</CODE > to a string containing command-line options that you want <SPAN CLASS="application" >SCons</SPAN > to use. </P ><P > If, for example, you're using a POSIX shell that's compatible with the Bourne shell, and you always want <SPAN CLASS="application" >SCons</SPAN > to use the <TT CLASS="literal" >-Q</TT > option, you can set the <CODE CLASS="varname" >SCONSFLAGS</CODE > environment as follows: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons</KBD > scons: Reading SConscript files ... scons: done reading SConscript files. scons: Building targets ... ... [build output] ... scons: done building targets. % <KBD CLASS="userinput" >export SCONSFLAGS="-Q"</KBD > % <KBD CLASS="userinput" >scons</KBD > ... [build output] ... </PRE ><P > Users of <SPAN CLASS="application" >csh</SPAN >-style shells on POSIX systems can set the <CODE CLASS="varname" >SCONSFLAGS</CODE > environment as follows: </P ><PRE CLASS="screen" > $ <KBD CLASS="userinput" >setenv SCONSFLAGS "-Q"</KBD > </PRE ><P > Windows users may typically want to set the <CODE CLASS="varname" >SCONSFLAGS</CODE > in the appropriate tab of the <TT CLASS="literal" >System Properties</TT > window. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN2074" >12.1.2. Getting Values Set by Command-Line Options: the <CODE CLASS="function" >GetOption</CODE > Function</A ></H3 ><P > <SPAN CLASS="application" >SCons</SPAN > provides the <CODE CLASS="function" >GetOption</CODE > function to get the values set by the various command-line options. One common use of this is to check whether or not the <TT CLASS="literal" >-h</TT > or <TT CLASS="literal" >--help</TT > option has been specified. Normally, <SPAN CLASS="application" >SCons</SPAN > does not print its help text until after it has read all of the <TT CLASS="filename" >SConscript</TT > files, because it's possible that help text has been added by some subsidiary <TT CLASS="filename" >SConscript</TT > file deep in the source tree hierarchy. Of course, reading all of the <TT CLASS="filename" >SConscript</TT > files takes extra time. </P ><P > If you know that your configuration does not define any additional help text in subsidiary <TT CLASS="filename" >SConscript</TT > files, you can speed up the command-line help available to users by using the <CODE CLASS="function" >GetOption</CODE > function to load the subsidiary <TT CLASS="filename" >SConscript</TT > files only if the the user has <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > specified the <TT CLASS="literal" >-h</TT > or <TT CLASS="literal" >--help</TT > option, like so: </P ><PRE CLASS="programlisting" ></PRE ><P > In general, the string that you pass to the <CODE CLASS="function" >GetOption</CODE > function to fetch the value of a command-line option setting is the same as the "most common" long option name (beginning with two hyphen characters), although there are some exceptions. The list of <SPAN CLASS="application" >SCons</SPAN > command-line options and the <CODE CLASS="function" >GetOption</CODE > strings for fetching them, are available in the <A HREF="#sect-command-line-option-strings" >Section 12.1.4</A > section, below. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN2099" >12.1.3. Setting Values of Command-Line Options: the <CODE CLASS="function" >SetOption</CODE > Function</A ></H3 ><P > You can also set the values of <SPAN CLASS="application" >SCons</SPAN > command-line options from within the <TT CLASS="filename" >SConscript</TT > files by using the <CODE CLASS="function" >SetOption</CODE > function. The strings that you use to set the values of <SPAN CLASS="application" >SCons</SPAN > command-line options are available in the <A HREF="#sect-command-line-option-strings" >Section 12.1.4</A > section, below. </P ><P > One use of the <CODE CLASS="function" >SetOption</CODE > function is to specify a value for the <TT CLASS="literal" >-j</TT > or <TT CLASS="literal" >--jobs</TT > option, so that users get the improved performance of a parallel build without having to specify the option by hand. A complicating factor is that a good value for the <TT CLASS="literal" >-j</TT > option is somewhat system-dependent. One rough guideline is that the more processors your system has, the higher you want to set the <TT CLASS="literal" >-j</TT > value, in order to take advantage of the number of CPUs. </P ><P > For example, suppose the administrators of your development systems have standardized on setting a <CODE CLASS="varname" >NUM_CPU</CODE > environment variable to the number of processors on each system. A little bit of Python code to access the environment variable and the <CODE CLASS="function" >SetOption</CODE > function provide the right level of flexibility: </P ><PRE CLASS="programlisting" > import os num_cpu = int(os.environ.get('NUM_CPU', 2)) SetOption('num_jobs', num_cpu) print "running with -j", GetOption('num_jobs') </PRE ><P > The above snippet of code sets the value of the <TT CLASS="literal" >--jobs</TT > option to the value specified in the <CODE CLASS="varname" >$NUM_CPU</CODE > environment variable. (This is one of the exception cases where the string is spelled differently from the from command-line option. The string for fetching or setting the <TT CLASS="literal" >--jobs</TT > value is <TT CLASS="literal" >num_jobs</TT > for historical reasons.) The code in this example prints the <TT CLASS="literal" >num_jobs</TT > value for illustrative purposes. It uses a default value of <TT CLASS="literal" >2</TT > to provide some minimal parallelism even on single-processor systems: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > running with -j 2 scons: `.' is up to date. </PRE ><P > But if the <CODE CLASS="varname" >$NUM_CPU</CODE > environment variable is set, then we use that for the default number of jobs: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >export NUM_CPU="4"</KBD > % <KBD CLASS="userinput" >scons -Q</KBD > running with -j 4 scons: `.' is up to date. </PRE ><P > But any explicit <TT CLASS="literal" >-j</TT > or <TT CLASS="literal" >--jobs</TT > value the user specifies an the command line is used first, regardless of whether or not the <CODE CLASS="varname" >$NUM_CPU</CODE > environment variable is set: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q -j 7</KBD > running with -j 7 scons: `.' is up to date. % <KBD CLASS="userinput" >export NUM_CPU="4"</KBD > % <KBD CLASS="userinput" >scons -Q -j 3</KBD > running with -j 3 scons: `.' is up to date. </PRE ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="sect-command-line-option-strings" >12.1.4. Strings for Getting or Setting Values of <SPAN CLASS="application" >SCons</SPAN > Command-Line Options</A ></H3 ><P > The strings that you can pass to the <CODE CLASS="function" >GetOption</CODE > and <CODE CLASS="function" >SetOption</CODE > functions usually correspond to the first long-form option name (beginning with two hyphen characters: <TT CLASS="literal" >--</TT >), after replacing any remaining hyphen characters with underscores. </P ><P > The full list of strings and the variables they correspond to is as follows: </P ><DIV CLASS="informaltable" ><P ></P ><A NAME="AEN2148" ></A ><TABLE BORDER="1" CLASS="CALSTABLE" ><COL><COL><THEAD ><TR ><TH >String for <CODE CLASS="function" >GetOption</CODE > and <CODE CLASS="function" >SetOption</CODE ></TH ><TH >Command-Line Option(s)</TH ></TR ></THEAD ><TBODY ><TR ><TD ><TT CLASS="literal" >cache_debug</TT ></TD ><TD ><CODE CLASS="option" >--cache-debug</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >cache_disable</TT ></TD ><TD ><CODE CLASS="option" >--cache-disable</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >cache_force</TT ></TD ><TD ><CODE CLASS="option" >--cache-force</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >cache_show</TT ></TD ><TD ><CODE CLASS="option" >--cache-show</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >clean</TT ></TD ><TD ><CODE CLASS="option" >-c</CODE >, <CODE CLASS="option" >--clean</CODE >, <CODE CLASS="option" >--remove</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >config</TT ></TD ><TD ><CODE CLASS="option" >--config</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >directory</TT ></TD ><TD ><CODE CLASS="option" >-C</CODE >, <CODE CLASS="option" >--directory</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >diskcheck</TT ></TD ><TD ><CODE CLASS="option" >--diskcheck</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >duplicate</TT ></TD ><TD ><CODE CLASS="option" >--duplicate</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >file</TT ></TD ><TD ><CODE CLASS="option" >-f</CODE >, <CODE CLASS="option" >--file</CODE >, <CODE CLASS="option" >--makefile </CODE >, <CODE CLASS="option" >--sconstruct</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >help</TT ></TD ><TD ><CODE CLASS="option" >-h</CODE >, <CODE CLASS="option" >--help</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >ignore_errors</TT ></TD ><TD ><CODE CLASS="option" >--ignore-errors</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >implicit_cache</TT ></TD ><TD ><CODE CLASS="option" >--implicit-cache</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >implicit_deps_changed</TT ></TD ><TD ><CODE CLASS="option" >--implicit-deps-changed</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >implicit_deps_unchanged</TT ></TD ><TD ><CODE CLASS="option" >--implicit-deps-unchanged</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >interactive</TT ></TD ><TD ><CODE CLASS="option" >--interact</CODE >, <CODE CLASS="option" >--interactive</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >keep_going</TT ></TD ><TD ><CODE CLASS="option" >-k</CODE >, <CODE CLASS="option" >--keep-going</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >max_drift</TT ></TD ><TD ><CODE CLASS="option" >--max-drift</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >no_exec</TT ></TD ><TD ><CODE CLASS="option" >-n</CODE >, <CODE CLASS="option" >--no-exec</CODE >, <CODE CLASS="option" >--just-print</CODE >, <CODE CLASS="option" >--dry-run</CODE >, <CODE CLASS="option" >--recon</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >no_site_dir</TT ></TD ><TD ><CODE CLASS="option" >--no-site-dir</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >num_jobs</TT ></TD ><TD ><CODE CLASS="option" >-j</CODE >, <CODE CLASS="option" >--jobs</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >profile_file</TT ></TD ><TD ><CODE CLASS="option" >--profile</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >question</TT ></TD ><TD ><CODE CLASS="option" >-q</CODE >, <CODE CLASS="option" >--question</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >random</TT ></TD ><TD ><CODE CLASS="option" >--random</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >repository</TT ></TD ><TD ><CODE CLASS="option" >-Y</CODE >, <CODE CLASS="option" >--repository</CODE >, <CODE CLASS="option" >--srcdir</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >silent</TT ></TD ><TD ><CODE CLASS="option" >-s</CODE >, <CODE CLASS="option" >--silent</CODE >, <CODE CLASS="option" >--quiet</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >site_dir</TT ></TD ><TD ><CODE CLASS="option" >--site-dir</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >stack_size</TT ></TD ><TD ><CODE CLASS="option" >--stack-size</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >taskmastertrace_file</TT ></TD ><TD ><CODE CLASS="option" >--taskmastertrace</CODE ></TD ></TR ><TR ><TD ><TT CLASS="literal" >warn</TT ></TD ><TD ><CODE CLASS="option" >--warn</CODE > <CODE CLASS="option" >--warning</CODE ></TD ></TR ></TBODY ></TABLE ><P ></P ></DIV ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN2327" >12.1.5. Adding Custom Command-Line Options: the <CODE CLASS="function" >AddOption</CODE > Function</A ></H3 ><P > <SPAN CLASS="application" >SCons</SPAN > also allows you to define your own command-line options with the <CODE CLASS="function" >AddOption</CODE > function. The <CODE CLASS="function" >AddOption</CODE > function takes the same arguments as the <CODE CLASS="function" >optparse.add_option</CODE > function from the standard Python library. <A NAME="AEN2335" HREF="#FTN.AEN2335" ><SPAN CLASS="footnote" >[3]</SPAN ></A > Once you have added a custom command-line option with the <CODE CLASS="function" >AddOption</CODE > function, the value of the option (if any) is immediately available using the standard <CODE CLASS="function" >GetOption</CODE > function. (The value can also be set using <CODE CLASS="function" >SetOption</CODE >, although that's not very useful in practice because a default value can be specified in directly in the <CODE CLASS="function" >AddOption</CODE > call.) </P ><P > One useful example of using this functionality is to provide a <CODE CLASS="option" >--prefix</CODE > for users: </P ><PRE CLASS="programlisting" > AddOption('--prefix', dest='prefix', type='string', nargs=1, action='store', metavar='DIR', help='installation prefix') env = Environment(PREFIX = GetOption('prefix')) installed_foo = env.Install('$PREFIX/usr/bin', 'foo.in') Default(installed_foo) </PRE ><P > The above code uses the <CODE CLASS="function" >GetOption</CODE > function to set the <CODE CLASS="varname" >$PREFIX</CODE > construction variable to any value that the user specifies with a command-line option of <TT CLASS="literal" >--prefix</TT >. Because <CODE CLASS="varname" >$PREFIX</CODE > will expand to a null string if it's not initialized, running <SPAN CLASS="application" >SCons</SPAN > without the option of <TT CLASS="literal" >--prefix</TT > will install the file in the <TT CLASS="filename" >/usr/bin/</TT > directory: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q -n</KBD > Install file: "foo.in" as "/usr/bin/foo.in" </PRE ><P > But specifying <TT CLASS="literal" >--prefix=/tmp/install</TT > on the command line causes the file to be installed in the <TT CLASS="filename" >/tmp/install/usr/bin/</TT > directory: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q -n --prefix=/tmp/install</KBD > Install file: "foo.in" as "/tmp/install/usr/bin/foo.in" </PRE ></DIV ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="sect-command-line-variables" >12.2. Command-Line <CODE CLASS="varname" >variable</CODE >=<CODE CLASS="varname" >value</CODE > Build Variables</A ></H2 ><P > You may want to control various aspects of your build by allowing the user to specify <CODE CLASS="varname" >variable</CODE >=<CODE CLASS="varname" >value</CODE > values on the command line. For example, suppose you want users to be able to build a debug version of a program by running <SPAN CLASS="application" >SCons</SPAN > as follows: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q debug=1</KBD > </PRE ><P > <SPAN CLASS="application" >SCons</SPAN > provides an <CODE CLASS="varname" >ARGUMENTS</CODE > dictionary that stores all of the <CODE CLASS="varname" >variable</CODE >=<CODE CLASS="varname" >value</CODE > assignments from the command line. This allows you to modify aspects of your build in response to specifications on the command line. (Note that unless you want to require that users <SPAN CLASS="emphasis" ><I CLASS="emphasis" >always</I ></SPAN > specify a variable, you probably want to use the Python <TT CLASS="literal" >ARGUMENTS.get()</TT > function, which allows you to specify a default value to be used if there is no specification on the command line.) </P ><P > The following code sets the <A HREF="#cv-CCFLAGS" ><CODE CLASS="envar" >$CCFLAGS</CODE ></A > construction variable in response to the <CODE CLASS="varname" >debug</CODE > flag being set in the <CODE CLASS="varname" >ARGUMENTS</CODE > dictionary: </P ><PRE CLASS="programlisting" > env = Environment() debug = ARGUMENTS.get('debug', 0) if int(debug): env.Append(CCFLAGS = '-g') env.Program('prog.c') </PRE ><P > This results in the <CODE CLASS="varname" >-g</CODE > compiler option being used when <TT CLASS="literal" >debug=1</TT > is used on the command line: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q debug=0</KBD > cc -o prog.o -c prog.c cc -o prog prog.o % <KBD CLASS="userinput" >scons -Q debug=0</KBD > scons: `.' is up to date. % <KBD CLASS="userinput" >scons -Q debug=1</KBD > cc -o prog.o -c -g prog.c cc -o prog prog.o % <KBD CLASS="userinput" >scons -Q debug=1</KBD > scons: `.' is up to date. </PRE ><P > Notice that <SPAN CLASS="application" >SCons</SPAN > keeps track of the last values used to build the object files, and as a result correctly rebuilds the object and executable files only when the value of the <TT CLASS="literal" >debug</TT > argument has changed. </P ><P > The <CODE CLASS="varname" >ARGUMENTS</CODE > dictionary has two minor drawbacks. First, because it is a dictionary, it can only store one value for each specified keyword, and thus only "remembers" the last setting for each keyword on the command line. This makes the <CODE CLASS="varname" >ARGUMENTS</CODE > dictionary inappropriate if users should be able to specify multiple values on the command line for a given keyword. Second, it does not preserve the order in which the variable settings were specified, which is a problem if you want the configuration to behave differently in response to the order in which the build variable settings were specified on the command line. </P ><P > To accomodate these requirements, <SPAN CLASS="application" >SCons</SPAN > provides an <CODE CLASS="varname" >ARGLIST</CODE > variable that gives you direct access to <CODE CLASS="varname" >variable</CODE >=<CODE CLASS="varname" >value</CODE > settings on the command line, in the exact order they were specified, and without removing any duplicate settings. Each element in the <CODE CLASS="varname" >ARGLIST</CODE > variable is itself a two-element list containing the keyword and the value of the setting, and you must loop through, or otherwise select from, the elements of <CODE CLASS="varname" >ARGLIST</CODE > to process the specific settings you want in whatever way is appropriate for your configuration. For example, the following code to let the user add to the <CODE CLASS="varname" >CPPDEFINES</CODE > construction variable by specifying multiple <CODE CLASS="varname" >define=</CODE > settings on the command line: </P ><PRE CLASS="programlisting" > cppdefines = [] for key, value in ARGLIST: if key == 'define': cppdefines.append(value) env = Environment(CPPDEFINES = cppdefines) env.Object('prog.c') </PRE ><P > Yields the followig output: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q define=FOO</KBD > cc -o prog.o -c -DFOO prog.c % <KBD CLASS="userinput" >scons -Q define=FOO define=BAR</KBD > cc -o prog.o -c -DFOO -DBAR prog.c </PRE ><P > Note that the <CODE CLASS="varname" >ARGLIST</CODE > and <CODE CLASS="varname" >ARGUMENTS</CODE > variables do not interfere with each other, but merely provide slightly different views into how the user specified <CODE CLASS="varname" >variable</CODE >=<CODE CLASS="varname" >value</CODE > settings on the command line. You can use both variables in the same <SPAN CLASS="application" >SCons</SPAN > configuration. In general, the <CODE CLASS="varname" >ARGUMENTS</CODE > dictionary is more convenient to use, (since you can just fetch variable settings through a dictionary access), and the <CODE CLASS="varname" >ARGLIST</CODE > list is more flexible (since you can examine the specific order in which the user's command-line variabe settings). </P ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN2420" >12.2.1. Controlling Command-Line Build Variables</A ></H3 ><P > Being able to use a command-line build variable like <TT CLASS="literal" >debug=1</TT > is handy, but it can be a chore to write specific Python code to recognize each such variable, check for errors and provide appropriate messages, and apply the values to a construction variable. To help with this, <SPAN CLASS="application" >SCons</SPAN > supports a class to define such build variables easily, and a mechanism to apply the build variables to a construction environment. This allows you to control how the build variables affect construction environments. </P ><P > For example, suppose that you want users to set a <CODE CLASS="varname" >RELEASE</CODE > construction variable on the command line whenever the time comes to build a program for release, and that the value of this variable should be added to the command line with the appropriate <TT CLASS="literal" >-D</TT > option (or other command line option) to pass the value to the C compiler. Here's how you might do that by setting the appropriate value in a dictionary for the <A HREF="#cv-CPPDEFINES" ><CODE CLASS="envar" >$CPPDEFINES</CODE ></A > construction variable: </P ><PRE CLASS="programlisting" > vars = Variables() vars.Add('RELEASE', 'Set to 1 to build for release', 0) env = Environment(variables = vars, CPPDEFINES={'RELEASE_BUILD' : '${RELEASE}'}) env.Program(['foo.c', 'bar.c']) </PRE ><P > This <TT CLASS="filename" >SConstruct</TT > file first creates a <CODE CLASS="function" >Variables</CODE > object (the <TT CLASS="literal" >vars = Variables()</TT > call), and then uses the object's <CODE CLASS="function" >Add</CODE > method to indicate that the <CODE CLASS="varname" >RELEASE</CODE > variable can be set on the command line, and that its default value will be <TT CLASS="literal" >0</TT > (the third argument to the <CODE CLASS="function" >Add</CODE > method). The second argument is a line of help text; we'll learn how to use it in the next section. </P ><P > We then pass the created <CODE CLASS="function" >Variables</CODE > object as a <CODE CLASS="varname" >variables</CODE > keyword argument to the <CODE CLASS="function" >Environment</CODE > call used to create the construction environment. This then allows a user to set the <CODE CLASS="varname" >RELEASE</CODE > build variable on the command line and have the variable show up in the command line used to build each object from a C source file: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q RELEASE=1</KBD > cc -o bar.o -c -DRELEASE_BUILD=1 bar.c cc -o foo.o -c -DRELEASE_BUILD=1 foo.c cc -o foo foo.o bar.o </PRE ><P > NOTE: Before <SPAN CLASS="application" >SCons</SPAN > release 0.98.1, these build variables were known as "command-line build options." The class was actually named the <CODE CLASS="function" >Options</CODE > class, and in the sections below, the various functions were named <CODE CLASS="function" >BoolOption</CODE >, <CODE CLASS="function" >EnumOption</CODE >, <CODE CLASS="function" >ListOption</CODE >, <CODE CLASS="function" >PathOption</CODE >, <CODE CLASS="function" >PackageOption</CODE > and <CODE CLASS="function" >AddOptions</CODE >. These older names still work, and you may encounter them in older <TT CLASS="filename" >SConscript</TT > fles, but their use is discouraged and will be officially deprecated some day. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN2456" >12.2.2. Providing Help for Command-Line Build Variables</A ></H3 ><P > To make command-line build variables most useful, you ideally want to provide some help text that will describe the available variables when the user runs <TT CLASS="literal" >scons -h</TT >. You could write this text by hand, but <SPAN CLASS="application" >SCons</SPAN > provides an easier way. <CODE CLASS="function" >Variables</CODE > objects support a <CODE CLASS="function" >GenerateHelpText</CODE > method that will, as its name suggests, generate text that describes the various variables that have been added to it. You then pass the output from this method to the <CODE CLASS="function" >Help</CODE > function: </P ><PRE CLASS="programlisting" > vars = Variables('custom.py') vars.Add('RELEASE', 'Set to 1 to build for release', 0) env = Environment(variables = vars) Help(vars.GenerateHelpText(env)) </PRE ><P > <SPAN CLASS="application" >SCons</SPAN > will now display some useful text when the <TT CLASS="literal" >-h</TT > option is used: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q -h</KBD > RELEASE: Set to 1 to build for release default: 0 actual: 0 Use scons -H for help about command-line options. </PRE ><P > Notice that the help output shows the default value, and the current actual value of the build variable. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN2471" >12.2.3. Reading Build Variables From a File</A ></H3 ><P > Giving the user a way to specify the value of a build variable on the command line is useful, but can still be tedious if users must specify the variable every time they run <SPAN CLASS="application" >SCons</SPAN >. We can let users provide customized build variable settings in a local file by providing a file name when we create the <CODE CLASS="function" >Variables</CODE > object: </P ><PRE CLASS="programlisting" > vars = Variables('custom.py') vars.Add('RELEASE', 'Set to 1 to build for release', 0) env = Environment(variables = vars, CPPDEFINES={'RELEASE_BUILD' : '${RELEASE}'}) env.Program(['foo.c', 'bar.c']) Help(vars.GenerateHelpText(env)) </PRE ><P > This then allows the user to control the <CODE CLASS="varname" >RELEASE</CODE > variable by setting it in the <TT CLASS="filename" >custom.py</TT > file: </P ><PRE CLASS="programlisting" > RELEASE = 1 </PRE ><P > Note that this file is actually executed like a Python script. Now when we run <SPAN CLASS="application" >SCons</SPAN >: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o bar.o -c -DRELEASE_BUILD=1 bar.c cc -o foo.o -c -DRELEASE_BUILD=1 foo.c cc -o foo foo.o bar.o </PRE ><P > And if we change the contents of <TT CLASS="filename" >custom.py</TT > to: </P ><PRE CLASS="programlisting" > RELEASE = 0 </PRE ><P > The object files are rebuilt appropriately with the new variable: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o bar.o -c -DRELEASE_BUILD=0 bar.c cc -o foo.o -c -DRELEASE_BUILD=0 foo.c cc -o foo foo.o bar.o </PRE ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN2491" >12.2.4. Pre-Defined Build Variable Functions</A ></H3 ><P > <SPAN CLASS="application" >SCons</SPAN > provides a number of functions that provide ready-made behaviors for various types of command-line build variables. </P ><DIV CLASS="section" ><HR><H4 CLASS="section" ><A NAME="AEN2495" >12.2.4.1. True/False Values: the <CODE CLASS="function" >BoolVariable</CODE > Build Variable Function</A ></H4 ><P > It's often handy to be able to specify a variable that controls a simple Boolean variable with a <TT CLASS="literal" >true</TT > or <TT CLASS="literal" >false</TT > value. It would be even more handy to accomodate users who have different preferences for how to represent <TT CLASS="literal" >true</TT > or <TT CLASS="literal" >false</TT > values. The <CODE CLASS="function" >BoolVariable</CODE > function makes it easy to accomodate these common representations of <TT CLASS="literal" >true</TT > or <TT CLASS="literal" >false</TT >. </P ><P > The <CODE CLASS="function" >BoolVariable</CODE > function takes three arguments: the name of the build variable, the default value of the build variable, and the help string for the variable. It then returns appropriate information for passing to the <CODE CLASS="function" >Add</CODE > method of a <CODE CLASS="function" >Variables</CODE > object, like so: </P ><PRE CLASS="programlisting" > vars = Variables('custom.py') vars.Add(BoolVariable('RELEASE', 'Set to build for release', 0)) env = Environment(variables = vars, CPPDEFINES={'RELEASE_BUILD' : '${RELEASE}'}) env.Program('foo.c') </PRE ><P > With this build variable, the <CODE CLASS="varname" >RELEASE</CODE > variable can now be enabled by setting it to the value <TT CLASS="literal" >yes</TT > or <TT CLASS="literal" >t</TT >: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q RELEASE=yes foo.o</KBD > cc -o foo.o -c -DRELEASE_BUILD=True foo.c </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q RELEASE=t foo.o</KBD > cc -o foo.o -c -DRELEASE_BUILD=True foo.c </PRE ><P > Other values that equate to <TT CLASS="literal" >true</TT > include <TT CLASS="literal" >y</TT >, <TT CLASS="literal" >1</TT >, <TT CLASS="literal" >on</TT > and <TT CLASS="literal" >all</TT >. </P ><P > Conversely, <CODE CLASS="varname" >RELEASE</CODE > may now be given a <TT CLASS="literal" >false</TT > value by setting it to <TT CLASS="literal" >no</TT > or <TT CLASS="literal" >f</TT >: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q RELEASE=no foo.o</KBD > cc -o foo.o -c -DRELEASE_BUILD=False foo.c </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q RELEASE=f foo.o</KBD > cc -o foo.o -c -DRELEASE_BUILD=False foo.c </PRE ><P > Other values that equate to <TT CLASS="literal" >false</TT > include <TT CLASS="literal" >n</TT >, <TT CLASS="literal" >0</TT >, <TT CLASS="literal" >off</TT > and <TT CLASS="literal" >none</TT >. </P ><P > Lastly, if a user tries to specify any other value, <SPAN CLASS="application" >SCons</SPAN > supplies an appropriate error message: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q RELEASE=bad_value foo.o</KBD > scons: *** Error converting option: RELEASE Invalid value for boolean option: bad_value File "/home/my/project/SConstruct", line 4, in <module> </PRE ></DIV ><DIV CLASS="section" ><HR><H4 CLASS="section" ><A NAME="AEN2544" >12.2.4.2. Single Value From a List: the <CODE CLASS="function" >EnumVariable</CODE > Build Variable Function</A ></H4 ><P > Suppose that we want a user to be able to set a <CODE CLASS="varname" >COLOR</CODE > variable that selects a background color to be displayed by an application, but that we want to restrict the choices to a specific set of allowed colors. This can be set up quite easily using the <CODE CLASS="function" >EnumVariable</CODE >, which takes a list of <CODE CLASS="varname" >allowed_values</CODE > in addition to the variable name, default value, and help text arguments: </P ><PRE CLASS="programlisting" > vars = Variables('custom.py') vars.Add(EnumVariable('COLOR', 'Set background color', 'red', allowed_values=('red', 'green', 'blue'))) env = Environment(variables = vars, CPPDEFINES={'COLOR' : '"${COLOR}"'}) env.Program('foo.c') </PRE ><P > The user can now explicity set the <CODE CLASS="varname" >COLOR</CODE > build variable to any of the specified allowed values: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q COLOR=red foo.o</KBD > cc -o foo.o -c -DCOLOR="red" foo.c % <KBD CLASS="userinput" >scons -Q COLOR=blue foo.o</KBD > cc -o foo.o -c -DCOLOR="blue" foo.c % <KBD CLASS="userinput" >scons -Q COLOR=green foo.o</KBD > cc -o foo.o -c -DCOLOR="green" foo.c </PRE ><P > But, almost more importantly, an attempt to set <CODE CLASS="varname" >COLOR</CODE > to a value that's not in the list generates an error message: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q COLOR=magenta foo.o</KBD > scons: *** Invalid value for option COLOR: magenta File "/home/my/project/SConstruct", line 5, in <module> </PRE ><P > The <CODE CLASS="function" >EnumVariable</CODE > function also supports a way to map alternate names to allowed values. Suppose, for example, that we want to allow the user to use the word <TT CLASS="literal" >navy</TT > as a synonym for <TT CLASS="literal" >blue</TT >. We do this by adding a <CODE CLASS="varname" >map</CODE > dictionary that will map its key values to the desired legal value: </P ><PRE CLASS="programlisting" > vars = Variables('custom.py') vars.Add(EnumVariable('COLOR', 'Set background color', 'red', allowed_values=('red', 'green', 'blue'), map={'navy':'blue'})) env = Environment(variables = vars, CPPDEFINES={'COLOR' : '"${COLOR}"'}) env.Program('foo.c') </PRE ><P > As desired, the user can then use <TT CLASS="literal" >navy</TT > on the command line, and <SPAN CLASS="application" >SCons</SPAN > will translate it into <TT CLASS="literal" >blue</TT > when it comes time to use the <CODE CLASS="varname" >COLOR</CODE > variable to build a target: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q COLOR=navy foo.o</KBD > cc -o foo.o -c -DCOLOR="blue" foo.c </PRE ><P > By default, when using the <CODE CLASS="function" >EnumVariable</CODE > function, arguments that differ from the legal values only in case are treated as illegal values: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q COLOR=Red foo.o</KBD > scons: *** Invalid value for option COLOR: Red File "/home/my/project/SConstruct", line 5, in <module> % <KBD CLASS="userinput" >scons -Q COLOR=BLUE foo.o</KBD > scons: *** Invalid value for option COLOR: BLUE File "/home/my/project/SConstruct", line 5, in <module> % <KBD CLASS="userinput" >scons -Q COLOR=nAvY foo.o</KBD > scons: *** Invalid value for option COLOR: nAvY File "/home/my/project/SConstruct", line 5, in <module> </PRE ><P > The <CODE CLASS="function" >EnumVariable</CODE > function can take an additional <CODE CLASS="varname" >ignorecase</CODE > keyword argument that, when set to <TT CLASS="literal" >1</TT >, tells <SPAN CLASS="application" >SCons</SPAN > to allow case differences when the values are specified: </P ><PRE CLASS="programlisting" > vars = Variables('custom.py') vars.Add(EnumVariable('COLOR', 'Set background color', 'red', allowed_values=('red', 'green', 'blue'), map={'navy':'blue'}, ignorecase=1)) env = Environment(variables = vars, CPPDEFINES={'COLOR' : '"${COLOR}"'}) env.Program('foo.c') </PRE ><P > Which yields the output: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q COLOR=Red foo.o</KBD > cc -o foo.o -c -DCOLOR="Red" foo.c % <KBD CLASS="userinput" >scons -Q COLOR=BLUE foo.o</KBD > cc -o foo.o -c -DCOLOR="BLUE" foo.c % <KBD CLASS="userinput" >scons -Q COLOR=nAvY foo.o</KBD > cc -o foo.o -c -DCOLOR="blue" foo.c % <KBD CLASS="userinput" >scons -Q COLOR=green foo.o</KBD > cc -o foo.o -c -DCOLOR="green" foo.c </PRE ><P > Notice that an <CODE CLASS="varname" >ignorecase</CODE > value of <TT CLASS="literal" >1</TT > preserves the case-spelling that the user supplied. If you want <SPAN CLASS="application" >SCons</SPAN > to translate the names into lower-case, regardless of the case used by the user, specify an <CODE CLASS="varname" >ignorecase</CODE > value of <TT CLASS="literal" >2</TT >: </P ><PRE CLASS="programlisting" > vars = Variables('custom.py') vars.Add(EnumVariable('COLOR', 'Set background color', 'red', allowed_values=('red', 'green', 'blue'), map={'navy':'blue'}, ignorecase=2)) env = Environment(variables = vars, CPPDEFINES={'COLOR' : '"${COLOR}"'}) env.Program('foo.c') </PRE ><P > Now <SPAN CLASS="application" >SCons</SPAN > will use values of <TT CLASS="literal" >red</TT >, <TT CLASS="literal" >green</TT > or <TT CLASS="literal" >blue</TT > regardless of how the user spells those values on the command line: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q COLOR=Red foo.o</KBD > cc -o foo.o -c -DCOLOR="red" foo.c % <KBD CLASS="userinput" >scons -Q COLOR=nAvY foo.o</KBD > cc -o foo.o -c -DCOLOR="blue" foo.c % <KBD CLASS="userinput" >scons -Q COLOR=GREEN foo.o</KBD > cc -o foo.o -c -DCOLOR="green" foo.c </PRE ></DIV ><DIV CLASS="section" ><HR><H4 CLASS="section" ><A NAME="AEN2609" >12.2.4.3. Multiple Values From a List: the <CODE CLASS="function" >ListVariable</CODE > Build Variable Function</A ></H4 ><P > Another way in which you might want to allow users to control a build variable is to specify a list of one or more legal values. <SPAN CLASS="application" >SCons</SPAN > supports this through the <CODE CLASS="function" >ListVariable</CODE > function. If, for example, we want a user to be able to set a <CODE CLASS="varname" >COLORS</CODE > variable to one or more of the legal list of values: </P ><PRE CLASS="programlisting" > vars = Variables('custom.py') vars.Add(ListVariable('COLORS', 'List of colors', 0, ['red', 'green', 'blue'])) env = Environment(variables = vars, CPPDEFINES={'COLORS' : '"${COLORS}"'}) env.Program('foo.c') </PRE ><P > A user can now specify a comma-separated list of legal values, which will get translated into a space-separated list for passing to the any build commands: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q COLORS=red,blue foo.o</KBD > cc -o foo.o -c -DCOLORS="red blue" foo.c % <KBD CLASS="userinput" >scons -Q COLORS=blue,green,red foo.o</KBD > cc -o foo.o -c -DCOLORS="blue green red" foo.c </PRE ><P > In addition, the <CODE CLASS="function" >ListVariable</CODE > function allows the user to specify explicit keywords of <TT CLASS="literal" >all</TT > or <TT CLASS="literal" >none</TT > to select all of the legal values, or none of them, respectively: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q COLORS=all foo.o</KBD > cc -o foo.o -c -DCOLORS="red green blue" foo.c % <KBD CLASS="userinput" >scons -Q COLORS=none foo.o</KBD > cc -o foo.o -c -DCOLORS="" foo.c </PRE ><P > And, of course, an illegal value still generates an error message: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q COLORS=magenta foo.o</KBD > scons: *** Error converting option: COLORS Invalid value(s) for option: magenta File "/home/my/project/SConstruct", line 5, in <module> </PRE ></DIV ><DIV CLASS="section" ><HR><H4 CLASS="section" ><A NAME="AEN2631" >12.2.4.4. Path Names: the <CODE CLASS="function" >PathVariable</CODE > Build Variable Function</A ></H4 ><P > <SPAN CLASS="application" >SCons</SPAN > supports a <CODE CLASS="function" >PathVariable</CODE > function to make it easy to create a build variable to control an expected path name. If, for example, you need to define a variable in the preprocessor that controls the location of a configuration file: </P ><PRE CLASS="programlisting" > vars = Variables('custom.py') vars.Add(PathVariable('CONFIG', 'Path to configuration file', '/etc/my_config')) env = Environment(variables = vars, CPPDEFINES={'CONFIG_FILE' : '"$CONFIG"'}) env.Program('foo.c') </PRE ><P > This then allows the user to override the <CODE CLASS="varname" >CONFIG</CODE > build variable on the command line as necessary: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q foo.o</KBD > cc -o foo.o -c -DCONFIG_FILE="/etc/my_config" foo.c % <KBD CLASS="userinput" >scons -Q CONFIG=/usr/local/etc/other_config foo.o</KBD > scons: `foo.o' is up to date. </PRE ><P > By default, <CODE CLASS="function" >PathVariable</CODE > checks to make sure that the specified path exists and generates an error if it doesn't: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q CONFIG=/does/not/exist foo.o</KBD > scons: *** Path for option CONFIG does not exist: /does/not/exist File "/home/my/project/SConstruct", line 6, in <module> </PRE ><P > <CODE CLASS="function" >PathVariable</CODE > provides a number of methods that you can use to change this behavior. If you want to ensure that any specified paths are, in fact, files and not directories, use the <CODE CLASS="function" >PathVariable.PathIsFile</CODE > method: </P ><PRE CLASS="programlisting" > vars = Variables('custom.py') vars.Add(PathVariable('CONFIG', 'Path to configuration file', '/etc/my_config', PathVariable.PathIsFile)) env = Environment(variables = vars, CPPDEFINES={'CONFIG_FILE' : '"$CONFIG"'}) env.Program('foo.c') </PRE ><P > Conversely, to ensure that any specified paths are directories and not files, use the <CODE CLASS="function" >PathVariable.PathIsDir</CODE > method: </P ><PRE CLASS="programlisting" > vars = Variables('custom.py') vars.Add(PathVariable('DBDIR', 'Path to database directory', '/var/my_dbdir', PathVariable.PathIsDir)) env = Environment(variables = vars, CPPDEFINES={'DBDIR' : '"$DBDIR"'}) env.Program('foo.c') </PRE ><P > If you want to make sure that any specified paths are directories, and you would like the directory created if it doesn't already exist, use the <CODE CLASS="function" >PathVariable.PathIsDirCreate</CODE > method: </P ><PRE CLASS="programlisting" > vars = Variables('custom.py') vars.Add(PathVariable('DBDIR', 'Path to database directory', '/var/my_dbdir', PathVariable.PathIsDirCreate)) env = Environment(variables = vars, CPPDEFINES={'DBDIR' : '"$DBDIR"'}) env.Program('foo.c') </PRE ><P > Lastly, if you don't care whether the path exists, is a file, or a directory, use the <CODE CLASS="function" >PathVariable.PathAccept</CODE > method to accept any path that the user supplies: </P ><PRE CLASS="programlisting" > vars = Variables('custom.py') vars.Add(PathVariable('OUTPUT', 'Path to output file or directory', None, PathVariable.PathAccept)) env = Environment(variables = vars, CPPDEFINES={'OUTPUT' : '"$OUTPUT"'}) env.Program('foo.c') </PRE ></DIV ><DIV CLASS="section" ><HR><H4 CLASS="section" ><A NAME="AEN2660" >12.2.4.5. Enabled/Disabled Path Names: the <CODE CLASS="function" >PackageVariable</CODE > Build Variable Function</A ></H4 ><P > Sometimes you want to give users even more control over a path name variable, allowing them to explicitly enable or disable the path name by using <TT CLASS="literal" >yes</TT > or <TT CLASS="literal" >no</TT > keywords, in addition to allow them to supply an explicit path name. <SPAN CLASS="application" >SCons</SPAN > supports the <CODE CLASS="function" >PackageVariable</CODE > function to support this: </P ><PRE CLASS="programlisting" > vars = Variables('custom.py') vars.Add(PackageVariable('PACKAGE', 'Location package', '/opt/location')) env = Environment(variables = vars, CPPDEFINES={'PACKAGE' : '"$PACKAGE"'}) env.Program('foo.c') </PRE ><P > When the <TT CLASS="filename" >SConscript</TT > file uses the <CODE CLASS="function" >PackageVariable</CODE > funciton, user can now still use the default or supply an overriding path name, but can now explicitly set the specified variable to a value that indicates the package should be enabled (in which case the default should be used) or disabled: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q foo.o</KBD > cc -o foo.o -c -DPACKAGE="/opt/location" foo.c % <KBD CLASS="userinput" >scons -Q PACKAGE=/usr/local/location foo.o</KBD > cc -o foo.o -c -DPACKAGE="/usr/local/location" foo.c % <KBD CLASS="userinput" >scons -Q PACKAGE=yes foo.o</KBD > cc -o foo.o -c -DPACKAGE="True" foo.c % <KBD CLASS="userinput" >scons -Q PACKAGE=no foo.o</KBD > cc -o foo.o -c -DPACKAGE="False" foo.c </PRE ></DIV ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN2677" >12.2.5. Adding Multiple Command-Line Build Variables at Once</A ></H3 ><P > Lastly, <SPAN CLASS="application" >SCons</SPAN > provides a way to add multiple build variables to a <CODE CLASS="function" >Variables</CODE > object at once. Instead of having to call the <CODE CLASS="function" >Add</CODE > method multiple times, you can call the <CODE CLASS="function" >AddVariables</CODE > method with a list of build variables to be added to the object. Each build variable is specified as either a tuple of arguments, just like you'd pass to the <CODE CLASS="function" >Add</CODE > method itself, or as a call to one of the pre-defined functions for pre-packaged command-line build variables. in any order: </P ><PRE CLASS="programlisting" > vars = Variables() vars.AddVariables( ('RELEASE', 'Set to 1 to build for release', 0), ('CONFIG', 'Configuration file', '/etc/my_config'), BoolVariable('warnings', 'compilation with -Wall and similiar', 1), EnumVariable('debug', 'debug output and symbols', 'no', allowed_values=('yes', 'no', 'full'), map={}, ignorecase=0), # case sensitive ListVariable('shared', 'libraries to build as shared libraries', 'all', names = list_of_libs), PackageVariable('x11', 'use X11 installed here (yes = search some places)', 'yes'), PathVariable('qtdir', 'where the root of Qt is installed', qtdir), ) </PRE ><P > </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN2687" >12.2.6. Handling Unknown Command-Line Build Variables: the <CODE CLASS="function" >UnknownVariables</CODE > Function</A ></H3 ><P > Users may, of course, occasionally misspell variable names in their command-line settings. <SPAN CLASS="application" >SCons</SPAN > does not generate an error or warning for any unknown variables the users specifies on the command line. (This is in no small part because you may be processing the arguments directly using the <CODE CLASS="varname" >ARGUMENTS</CODE > dictionary, and therefore <SPAN CLASS="application" >SCons</SPAN > can't know in the general case whether a given "misspelled" variable is really unknown and a potential problem, or something that your <TT CLASS="filename" >SConscript</TT > file will handle directly with some Python code.) </P ><P > If, however, you're using a <CODE CLASS="function" >Variables</CODE > object to define a specific set of command-line build variables that you expect users to be able to set, you may want to provide an error message or warning of your own if the user supplies a variable setting that is <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > among the defined list of variable names known to the <CODE CLASS="function" >Variables</CODE > object. You can do this by calling the <CODE CLASS="function" >UnknownVariables</CODE > method of the <CODE CLASS="function" >Variables</CODE > object: </P ><PRE CLASS="programlisting" > vars = Variables(None) vars.Add('RELEASE', 'Set to 1 to build for release', 0) env = Environment(variables = vars, CPPDEFINES={'RELEASE_BUILD' : '${RELEASE}'}) unknown = vars.UnknownVariables() if unknown: print "Unknown variables:", unknown.keys() Exit(1) env.Program('foo.c') </PRE ><P > The <CODE CLASS="function" >UnknownVariables</CODE > method returns a dictionary containing the keywords and values of any variables the user specified on the command line that are <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > among the variables known to the <CODE CLASS="function" >Variables</CODE > object (from having been specified using the <CODE CLASS="function" >Variables</CODE > object's<CODE CLASS="function" >Add</CODE > method). In the examble above, we check for whether the dictionary returned by the <CODE CLASS="function" >UnknownVariables</CODE > is non-empty, and if so print the Python list containing the names of the unknwown variables and then call the <CODE CLASS="function" >Exit</CODE > function to terminate <SPAN CLASS="application" >SCons</SPAN >: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q NOT_KNOWN=foo</KBD > Unknown variables: ['NOT_KNOWN'] </PRE ><P > Of course, you can process the items in the dictionary returned by the <CODE CLASS="function" >UnknownVariables</CODE > function in any way appropriate to your bulid configuration, including just printing a warning message but not exiting, logging an error somewhere, etc. </P ><P > Note that you must delay the call of <CODE CLASS="function" >UnknownVariables</CODE > until after you have applied the <CODE CLASS="function" >Variables</CODE > object to a construction environment with the <TT CLASS="literal" >variables=</TT > keyword argument of an <CODE CLASS="function" >Environment</CODE > call. </P ></DIV ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="sect-command-line-targets" >12.3. Command-Line Targets</A ></H2 ><DIV CLASS="section" ><H3 CLASS="section" ><A NAME="AEN2722" >12.3.1. Fetching Command-Line Targets: the <CODE CLASS="varname" >COMMAND_LINE_TARGETS</CODE > Variable</A ></H3 ><P > <SPAN CLASS="application" >SCons</SPAN > supports a <CODE CLASS="varname" >COMMAND_LINE_TARGETS</CODE > variable that lets you fetch the list of targets that the user specified on the command line. You can use the targets to manipulate the build in any way you wish. As a simple example, suppose that you want to print a reminder to the user whenever a specific program is built. You can do this by checking for the target in the <CODE CLASS="varname" >COMMAND_LINE_TARGETS</CODE > list: </P ><PRE CLASS="programlisting" > if 'bar' in COMMAND_LINE_TARGETS: print "Don't forget to copy `bar' to the archive!" Default(Program('foo.c')) Program('bar.c') </PRE ><P > Then, running <SPAN CLASS="application" >SCons</SPAN > with the default target works as it always does, but explicity specifying the <SPAN CLASS="application" >bar</SPAN > target on the command line generates the warning message: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o foo.o -c foo.c cc -o foo foo.o % <KBD CLASS="userinput" >scons -Q bar</KBD > Don't forget to copy `bar' to the archive! cc -o bar.o -c bar.c cc -o bar bar.o </PRE ><P > Another practical use for the <CODE CLASS="varname" >COMMAND_LINE_TARGETS</CODE > variable might be to speed up a build by only reading certain subsidiary <TT CLASS="filename" >SConscript</TT > files if a specific target is requested. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN2739" >12.3.2. Controlling the Default Targets: the <CODE CLASS="function" >Default</CODE > Function</A ></H3 ><P > One of the most basic things you can control is which targets <SPAN CLASS="application" >SCons</SPAN > will build by default--that is, when there are no targets specified on the command line. As mentioned previously, <SPAN CLASS="application" >SCons</SPAN > will normally build every target in or below the current directory by default--that is, when you don't explicitly specify one or more targets on the command line. Sometimes, however, you may want to specify explicitly that only certain programs, or programs in certain directories, should be built by default. You do this with the <CODE CLASS="function" >Default</CODE > function: </P ><PRE CLASS="programlisting" > env = Environment() hello = env.Program('hello.c') env.Program('goodbye.c') Default(hello) </PRE ><P > This <TT CLASS="filename" >SConstruct</TT > file knows how to build two programs, <SPAN CLASS="application" >hello</SPAN > and <SPAN CLASS="application" >goodbye</SPAN >, but only builds the <SPAN CLASS="application" >hello</SPAN > program by default: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >scons -Q</KBD > scons: `hello' is up to date. % <KBD CLASS="userinput" >scons -Q goodbye</KBD > cc -o goodbye.o -c goodbye.c cc -o goodbye goodbye.o </PRE ><P > Note that, even when you use the <CODE CLASS="function" >Default</CODE > function in your <TT CLASS="filename" >SConstruct</TT > file, you can still explicitly specify the current directory (<TT CLASS="literal" >.</TT >) on the command line to tell <SPAN CLASS="application" >SCons</SPAN > to build everything in (or below) the current directory: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q .</KBD > cc -o goodbye.o -c goodbye.c cc -o goodbye goodbye.o cc -o hello.o -c hello.c cc -o hello hello.o </PRE ><P > You can also call the <CODE CLASS="function" >Default</CODE > function more than once, in which case each call adds to the list of targets to be built by default: </P ><PRE CLASS="programlisting" > env = Environment() prog1 = env.Program('prog1.c') Default(prog1) prog2 = env.Program('prog2.c') prog3 = env.Program('prog3.c') Default(prog3) </PRE ><P > Or you can specify more than one target in a single call to the <CODE CLASS="function" >Default</CODE > function: </P ><PRE CLASS="programlisting" > env = Environment() prog1 = env.Program('prog1.c') prog2 = env.Program('prog2.c') prog3 = env.Program('prog3.c') Default(prog1, prog3) </PRE ><P > Either of these last two examples will build only the <SPAN CLASS="application" >prog1</SPAN > and <SPAN CLASS="application" >prog3</SPAN > programs by default: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o prog1.o -c prog1.c cc -o prog1 prog1.o cc -o prog3.o -c prog3.c cc -o prog3 prog3.o % <KBD CLASS="userinput" >scons -Q .</KBD > cc -o prog2.o -c prog2.c cc -o prog2 prog2.o </PRE ><P > You can list a directory as an argument to <CODE CLASS="function" >Default</CODE >: </P ><PRE CLASS="programlisting" > env = Environment() env.Program(['prog1/main.c', 'prog1/foo.c']) env.Program(['prog2/main.c', 'prog2/bar.c']) Default('prog1') </PRE ><P > In which case only the target(s) in that directory will be built by default: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o prog1/foo.o -c prog1/foo.c cc -o prog1/main.o -c prog1/main.c cc -o prog1/main prog1/main.o prog1/foo.o % <KBD CLASS="userinput" >scons -Q</KBD > scons: `prog1' is up to date. % <KBD CLASS="userinput" >scons -Q .</KBD > cc -o prog2/bar.o -c prog2/bar.c cc -o prog2/main.o -c prog2/main.c cc -o prog2/main prog2/main.o prog2/bar.o </PRE ><P > Lastly, if for some reason you don't want any targets built by default, you can use the Python <TT CLASS="literal" >None</TT > variable: </P ><PRE CLASS="programlisting" > env = Environment() prog1 = env.Program('prog1.c') prog2 = env.Program('prog2.c') Default(None) </PRE ><P > Which would produce build output like: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > scons: *** No targets specified and no Default() targets found. Stop. % <KBD CLASS="userinput" >scons -Q .</KBD > cc -o prog1.o -c prog1.c cc -o prog1 prog1.o cc -o prog2.o -c prog2.c cc -o prog2 prog2.o </PRE ><DIV CLASS="section" ><HR><H4 CLASS="section" ><A NAME="AEN2790" >12.3.2.1. Fetching the List of Default Targets: the <CODE CLASS="varname" >DEFAULT_TARGETS</CODE > Variable</A ></H4 ><P > <SPAN CLASS="application" >SCons</SPAN > supports a <CODE CLASS="varname" >DEFAULT_TARGETS</CODE > variable that lets you get at the current list of default targets. The <CODE CLASS="varname" >DEFAULT_TARGETS</CODE > variable has two important differences from the <CODE CLASS="varname" >COMMAND_LINE_TARGETS</CODE > variable. First, the <CODE CLASS="varname" >DEFAULT_TARGETS</CODE > variable is a list of internal <SPAN CLASS="application" >SCons</SPAN > nodes, so you need to convert the list elements to strings if you want to print them or look for a specific target name. Fortunately, you can do this easily by using the Python <CODE CLASS="function" >map</CODE > function to run the list through <CODE CLASS="function" >str</CODE >: </P ><PRE CLASS="programlisting" > prog1 = Program('prog1.c') Default(prog1) print "DEFAULT_TARGETS is", map(str, DEFAULT_TARGETS) </PRE ><P > (Keep in mind that all of the manipulation of the <CODE CLASS="varname" >DEFAULT_TARGETS</CODE > list takes place during the first phase when <SPAN CLASS="application" >SCons</SPAN > is reading up the <TT CLASS="filename" >SConscript</TT > files, which is obvious if we leave off the <TT CLASS="literal" >-Q</TT > flag when we run <SPAN CLASS="application" >SCons</SPAN >:) </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons</KBD > scons: Reading SConscript files ... DEFAULT_TARGETS is ['prog1'] scons: done reading SConscript files. scons: Building targets ... cc -o prog1.o -c prog1.c cc -o prog1 prog1.o scons: done building targets. </PRE ><P > Second, the contents of the <CODE CLASS="varname" >DEFAULT_TARGETS</CODE > list change in response to calls to the <CODE CLASS="function" >Default</CODE >: function, as you can see from the following <TT CLASS="filename" >SConstruct</TT > file: </P ><PRE CLASS="programlisting" > prog1 = Program('prog1.c') Default(prog1) print "DEFAULT_TARGETS is now", map(str, DEFAULT_TARGETS) prog2 = Program('prog2.c') Default(prog2) print "DEFAULT_TARGETS is now", map(str, DEFAULT_TARGETS) </PRE ><P > Which yields the output: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons</KBD > scons: Reading SConscript files ... DEFAULT_TARGETS is now ['prog1'] DEFAULT_TARGETS is now ['prog1', 'prog2'] scons: done reading SConscript files. scons: Building targets ... cc -o prog1.o -c prog1.c cc -o prog1 prog1.o cc -o prog2.o -c prog2.c cc -o prog2 prog2.o scons: done building targets. </PRE ><P > In practice, this simply means that you need to pay attention to the order in which you call the <CODE CLASS="function" >Default</CODE > function and refer to the <CODE CLASS="varname" >DEFAULT_TARGETS</CODE > list, to make sure that you don't examine the list before you've added the default targets you expect to find in it. </P ></DIV ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN2822" >12.3.3. Fetching the List of Build Targets, Regardless of Origin: the <CODE CLASS="varname" >BUILD_TARGETS</CODE > Variable</A ></H3 ><P > We've already been introduced to the <CODE CLASS="varname" >COMMAND_LINE_TARGETS</CODE > variable, which contains a list of targets specified on the command line, and the <CODE CLASS="varname" >DEFAULT_TARGETS</CODE > variable, which contains a list of targets specified via calls to the <CODE CLASS="function" >Default</CODE > method or function. Sometimes, however, you want a list of whatever targets <SPAN CLASS="application" >SCons</SPAN > will try to build, regardless of whether the targets came from the command line or a <CODE CLASS="function" >Default</CODE > call. You could code this up by hand, as follows: </P ><PRE CLASS="programlisting" > if COMMAND_LINE_TARGETS: targets = COMMAND_LINE_TARGETS else: targets = DEFAULT_TARGETS </PRE ><P > <SPAN CLASS="application" >SCons</SPAN >, however, provides a convenient <CODE CLASS="varname" >BUILD_TARGETS</CODE > variable that eliminates the need for this by-hand manipulation. Essentially, the <CODE CLASS="varname" >BUILD_TARGETS</CODE > variable contains a list of the command-line targets, if any were specified, and if no command-line targets were specified, it contains a list of the targets specified via the <CODE CLASS="function" >Default</CODE > method or function. </P ><P > Because <CODE CLASS="varname" >BUILD_TARGETS</CODE > may contain a list of <SPAN CLASS="application" >SCons</SPAN > nodes, you must convert the list elements to strings if you want to print them or look for a specific target name, just like the <CODE CLASS="varname" >DEFAULT_TARGETS</CODE > list: </P ><PRE CLASS="programlisting" > prog1 = Program('prog1.c') Program('prog2.c') Default(prog1) print "BUILD_TARGETS is", map(str, BUILD_TARGETS) </PRE ><P > Notice how the value of <CODE CLASS="varname" >BUILD_TARGETS</CODE > changes depending on whether a target is specified on the command line: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > BUILD_TARGETS is ['prog1'] cc -o prog1.o -c prog1.c cc -o prog1 prog1.o % <KBD CLASS="userinput" >scons -Q prog2</KBD > BUILD_TARGETS is ['prog2'] cc -o prog2.o -c prog2.c cc -o prog2 prog2.o % <KBD CLASS="userinput" >scons -Q -c .</KBD > BUILD_TARGETS is ['.'] Removed prog1.o Removed prog1 Removed prog2.o Removed prog2 </PRE ></DIV ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-install" ></A >Chapter 13. Installing Files in Other Directories: the <CODE CLASS="function" >Install</CODE > Builder</H1 ><P > Once a program is built, it is often appropriate to install it in another directory for public use. You use the <CODE CLASS="function" >Install</CODE > method to arrange for a program, or any other file, to be copied into a destination directory: </P ><PRE CLASS="programlisting" > env = Environment() hello = env.Program('hello.c') env.Install('/usr/bin', hello) </PRE ><P > Note, however, that installing a file is still considered a type of file "build." This is important when you remember that the default behavior of <SPAN CLASS="application" >SCons</SPAN > is to build files in or below the current directory. If, as in the example above, you are installing files in a directory outside of the top-level <TT CLASS="filename" >SConstruct</TT > file's directory tree, you must specify that directory (or a higher directory, such as <TT CLASS="literal" >/</TT >) for it to install anything there: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >scons -Q /usr/bin</KBD > Install file: "hello" as "/usr/bin/hello" </PRE ><P > It can, however, be cumbersome to remember (and type) the specific destination directory in which the program (or any other file) should be installed. This is an area where the <CODE CLASS="function" >Alias</CODE > function comes in handy, allowing you, for example, to create a pseudo-target named <TT CLASS="literal" >install</TT > that can expand to the specified destination directory: </P ><PRE CLASS="programlisting" > env = Environment() hello = env.Program('hello.c') env.Install('/usr/bin', hello) env.Alias('install', '/usr/bin') </PRE ><P > This then yields the more natural ability to install the program in its destination as follows: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >scons -Q install</KBD > Install file: "hello" as "/usr/bin/hello" </PRE ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN2869" >13.1. Installing Multiple Files in a Directory</A ></H2 ><P > You can install multiple files into a directory simply by calling the <CODE CLASS="function" >Install</CODE > function multiple times: </P ><PRE CLASS="programlisting" > env = Environment() hello = env.Program('hello.c') goodbye = env.Program('goodbye.c') env.Install('/usr/bin', hello) env.Install('/usr/bin', goodbye) env.Alias('install', '/usr/bin') </PRE ><P > Or, more succinctly, listing the multiple input files in a list (just like you can do with any other builder): </P ><PRE CLASS="programlisting" > env = Environment() hello = env.Program('hello.c') goodbye = env.Program('goodbye.c') env.Install('/usr/bin', [hello, goodbye]) env.Alias('install', '/usr/bin') </PRE ><P > Either of these two examples yields: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q install</KBD > cc -o goodbye.o -c goodbye.c cc -o goodbye goodbye.o Install file: "goodbye" as "/usr/bin/goodbye" cc -o hello.o -c hello.c cc -o hello hello.o Install file: "hello" as "/usr/bin/hello" </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN2879" >13.2. Installing a File Under a Different Name</A ></H2 ><P > The <CODE CLASS="function" >Install</CODE > method preserves the name of the file when it is copied into the destination directory. If you need to change the name of the file when you copy it, use the <CODE CLASS="function" >InstallAs</CODE > function: </P ><PRE CLASS="programlisting" > env = Environment() hello = env.Program('hello.c') env.InstallAs('/usr/bin/hello-new', hello) env.Alias('install', '/usr/bin') </PRE ><P > This installs the <TT CLASS="literal" >hello</TT > program with the name <TT CLASS="literal" >hello-new</TT > as follows: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q install</KBD > cc -o hello.o -c hello.c cc -o hello hello.o Install file: "hello" as "/usr/bin/hello-new" </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN2890" >13.3. Installing Multiple Files Under Different Names</A ></H2 ><P > Lastly, if you have multiple files that all need to be installed with different file names, you can either call the <CODE CLASS="function" >InstallAs</CODE > function multiple times, or as a shorthand, you can supply same-length lists for both the target and source arguments: </P ><PRE CLASS="programlisting" > env = Environment() hello = env.Program('hello.c') goodbye = env.Program('goodbye.c') env.InstallAs(['/usr/bin/hello-new', '/usr/bin/goodbye-new'], [hello, goodbye]) env.Alias('install', '/usr/bin') </PRE ><P > In this case, the <CODE CLASS="function" >InstallAs</CODE > function loops through both lists simultaneously, and copies each source file into its corresponding target file name: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q install</KBD > cc -o goodbye.o -c goodbye.c cc -o goodbye goodbye.o Install file: "goodbye" as "/usr/bin/goodbye-new" cc -o hello.o -c hello.c cc -o hello hello.o Install file: "hello" as "/usr/bin/hello-new" </PRE ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-factories" ></A >Chapter 14. Platform-Independent File System Manipulation</H1 ><P > <SPAN CLASS="application" >SCons</SPAN > provides a number of platform-independent functions, called <TT CLASS="literal" >factories</TT >, that perform common file system manipulations like copying, moving or deleting files and directories, or making directories. These functions are <TT CLASS="literal" >factories</TT > because they don't perform the action at the time they're called, they each return an <CODE CLASS="classname" >Action</CODE > object that can be executed at the appropriate time. </P ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN2906" >14.1. Copying Files or Directories: The <CODE CLASS="function" >Copy</CODE > Factory</A ></H2 ><P > Suppose you want to arrange to make a copy of a file, and don't have a suitable pre-existing builder. <A NAME="AEN2910" HREF="#FTN.AEN2910" ><SPAN CLASS="footnote" >[4]</SPAN ></A > One way would be to use the <CODE CLASS="function" >Copy</CODE > action factory in conjunction with the <CODE CLASS="function" >Command</CODE > builder: </P ><PRE CLASS="programlisting" > Command("file.out", "file.in", Copy("$TARGET", "$SOURCE")) </PRE ><P > Notice that the action returned by the <CODE CLASS="function" >Copy</CODE > factory will expand the <A HREF="#cv-TARGET" ><CODE CLASS="envar" >$TARGET</CODE ></A > and <A HREF="#cv-SOURCE" ><CODE CLASS="envar" >$SOURCE</CODE ></A > strings at the time <TT CLASS="filename" >file.out</TT > is built, and that the order of the arguments is the same as that of a builder itself--that is, target first, followed by source: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > Copy("file.out", "file.in") </PRE ><P > You can, of course, name a file explicitly instead of using <CODE CLASS="envar" >$TARGET</CODE > or <CODE CLASS="envar" >$SOURCE</CODE >: </P ><PRE CLASS="programlisting" > Command("file.out", [], Copy("$TARGET", "file.in")) </PRE ><P > Which executes as: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > Copy("file.out", "file.in") </PRE ><P > The usefulness of the <CODE CLASS="function" >Copy</CODE > factory becomes more apparent when you use it in a list of actions passed to the <CODE CLASS="function" >Command</CODE > builder. For example, suppose you needed to run a file through a utility that only modifies files in-place, and can't "pipe" input to output. One solution is to copy the source file to a temporary file name, run the utility, and then copy the modified temporary file to the target, which the <CODE CLASS="function" >Copy</CODE > factory makes extremely easy: </P ><PRE CLASS="programlisting" > Command("file.out", "file.in", [ Copy("tempfile", "$SOURCE"), "modify tempfile", Copy("$TARGET", "tempfile"), ]) </PRE ><P > The output then looks like: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > Copy("tempfile", "file.in") modify tempfile Copy("file.out", "tempfile") </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN2940" >14.2. Deleting Files or Directories: The <CODE CLASS="function" >Delete</CODE > Factory</A ></H2 ><P > If you need to delete a file, then the <CODE CLASS="function" >Delete</CODE > factory can be used in much the same way as the <CODE CLASS="function" >Copy</CODE > factory. For example, if we want to make sure that the temporary file in our last example doesn't exist before we copy to it, we could add <CODE CLASS="function" >Delete</CODE > to the beginning of the command list: </P ><PRE CLASS="programlisting" > Command("file.out", "file.in", [ Delete("tempfile"), Copy("tempfile", "$SOURCE"), "modify tempfile", Copy("$TARGET", "tempfile"), ]) </PRE ><P > When then executes as follows: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > Delete("tempfile") Copy("tempfile", "file.in") modify tempfile Copy("file.out", "tempfile") </PRE ><P > Of course, like all of these <CODE CLASS="classname" >Action</CODE > factories, the <CODE CLASS="function" >Delete</CODE > factory also expands <A HREF="#cv-TARGET" ><CODE CLASS="envar" >$TARGET</CODE ></A > and <A HREF="#cv-SOURCE" ><CODE CLASS="envar" >$SOURCE</CODE ></A > variables appropriately. For example: </P ><PRE CLASS="programlisting" > Command("file.out", "file.in", [ Delete("$TARGET"), Copy("$TARGET", "$SOURCE") ]) </PRE ><P > Executes as: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > Delete("file.out") Copy("file.out", "file.in") </PRE ><P > Note, however, that you typically don't need to call the <CODE CLASS="function" >Delete</CODE > factory explicitly in this way; by default, <SPAN CLASS="application" >SCons</SPAN > deletes its target(s) for you before executing any action. </P ><P > One word of caution about using the <CODE CLASS="function" >Delete</CODE > factory: it has the same variable expansions available as any other factory, including the <CODE CLASS="envar" >$SOURCE</CODE > variable. Specifying <TT CLASS="literal" >Delete("$SOURCE")</TT > is not something you usually want to do! </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN2969" >14.3. Moving (Renaming) Files or Directories: The <CODE CLASS="function" >Move</CODE > Factory</A ></H2 ><P > The <CODE CLASS="function" >Move</CODE > factory allows you to rename a file or directory. For example, if we don't want to copy the temporary file, we could use: </P ><PRE CLASS="programlisting" > Command("file.out", "file.in", [ Copy("tempfile", "$SOURCE"), "modify tempfile", Move("$TARGET", "tempfile"), ]) </PRE ><P > Which would execute as: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > Copy("tempfile", "file.in") modify tempfile Move("file.out", "tempfile") </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN2978" >14.4. Updating the Modification Time of a File: The <CODE CLASS="function" >Touch</CODE > Factory</A ></H2 ><P > If you just need to update the recorded modification time for a file, use the <CODE CLASS="function" >Touch</CODE > factory: </P ><PRE CLASS="programlisting" > Command("file.out", "file.in", [ Copy("$TARGET", "$SOURCE"), Touch("$TARGET"), ]) </PRE ><P > Which executes as: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > Copy("file.out", "file.in") Touch("file.out") </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN2987" >14.5. Creating a Directory: The <CODE CLASS="function" >Mkdir</CODE > Factory</A ></H2 ><P > If you need to create a directory, use the <CODE CLASS="function" >Mkdir</CODE > factory. For example, if we need to process a file in a temporary directory in which the processing tool will create other files that we don't care about, you could use: </P ><PRE CLASS="programlisting" > Command("file.out", "file.in", [ Delete("tempdir"), Mkdir("tempdir"), Copy("tempdir/${SOURCE.file}", "$SOURCE"), "process tempdir", Move("$TARGET", "tempdir/output_file"), Delete("tempdir"), ]) </PRE ><P > Which executes as: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > Delete("tempdir") Mkdir("tempdir") Copy("tempdir/file.in", "file.in") process tempdir Move("file.out", "tempdir/output_file") scons: *** [file.out] No such file or directory </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN2996" >14.6. Changing File or Directory Permissions: The <CODE CLASS="function" >Chmod</CODE > Factory</A ></H2 ><P > To change permissions on a file or directory, use the <CODE CLASS="function" >Chmod</CODE > factory. The permission argument uses POSIX-style permission bits and should typically be expressed as an octal, not decimal, number: </P ><PRE CLASS="programlisting" > Command("file.out", "file.in", [ Copy("$TARGET", "$SOURCE"), Chmod("$TARGET", 0755), ]) </PRE ><P > Which executes: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > Copy("file.out", "file.in") Chmod("file.out", 0755) </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3005" >14.7. Executing an action immediately: the <CODE CLASS="function" >Execute</CODE > Function</A ></H2 ><P > We've been showing you how to use <CODE CLASS="classname" >Action</CODE > factories in the <CODE CLASS="function" >Command</CODE > function. You can also execute an <CODE CLASS="classname" >Action</CODE > returned by a factory (or actually, any <CODE CLASS="classname" >Action</CODE >) at the time the <TT CLASS="filename" >SConscript</TT > file is read by using the <CODE CLASS="function" >Execute</CODE > function. For example, if we need to make sure that a directory exists before we build any targets, </P ><PRE CLASS="programlisting" > Execute(Mkdir('/tmp/my_temp_directory')) </PRE ><P > Notice that this will create the directory while the <TT CLASS="filename" >SConscript</TT > file is being read: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons</KBD > scons: Reading SConscript files ... Mkdir("/tmp/my_temp_directory") scons: done reading SConscript files. scons: Building targets ... scons: `.' is up to date. scons: done building targets. </PRE ><P > If you're familiar with Python, you may wonder why you would want to use this instead of just calling the native Python <CODE CLASS="function" >os.mkdir()</CODE > function. The advantage here is that the <CODE CLASS="function" >Mkdir</CODE > action will behave appropriately if the user specifies the <SPAN CLASS="application" >SCons</SPAN > <CODE CLASS="option" >-n</CODE > or <CODE CLASS="option" >-q</CODE > options--that is, it will print the action but not actually make the directory when <CODE CLASS="option" >-n</CODE > is specified, or make the directory but not print the action when <CODE CLASS="option" >-q</CODE > is specified. </P ><P > The <CODE CLASS="function" >Execute</CODE > function returns the exit status or return value of the underlying action being executed. It will also print an error message if the action fails and returns a non-zero value. <SPAN CLASS="application" >SCons</SPAN > will <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN >, however, actually stop the build if the action fails. If you want the build to stop in response to a failure in an action called by <CODE CLASS="function" >Execute</CODE >, you must do so by explicitly checking the return value and calling the <CODE CLASS="function" >Exit</CODE > function (or a Python equivalent): </P ><PRE CLASS="programlisting" > if Execute(Mkdir('/tmp/my_temp_directory')): # A problem occurred while making the temp directory. Exit(1) </PRE ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-file-removal" ></A >Chapter 15. Controlling Removal of Targets</H1 ><P > There are two occasions when <SPAN CLASS="application" >SCons</SPAN > will, by default, remove target files. The first is when <SPAN CLASS="application" >SCons</SPAN > determines that an target file needs to be rebuilt and removes the existing version of the target before executing The second is when <SPAN CLASS="application" >SCons</SPAN > is invoked with the <TT CLASS="literal" >-c</TT > option to "clean" a tree of its built targets. These behaviours can be suppressed with the <CODE CLASS="function" >Precious</CODE > and <CODE CLASS="function" >NoClean</CODE > functions, respectively. </P ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3044" >15.1. Preventing target removal during build: the <CODE CLASS="function" >Precious</CODE > Function</A ></H2 ><P > By default, <SPAN CLASS="application" >SCons</SPAN > removes targets before building them. Sometimes, however, this is not what you want. For example, you may want to update a library incrementally, not by having it deleted and then rebuilt from all of the constituent object files. In such cases, you can use the <CODE CLASS="function" >Precious</CODE > method to prevent <SPAN CLASS="application" >SCons</SPAN > from removing the target before it is built: </P ><PRE CLASS="programlisting" > env = Environment(RANLIBCOM='') lib = env.Library('foo', ['f1.c', 'f2.c', 'f3.c']) env.Precious(lib) </PRE ><P > Although the output doesn't look any different, <SPAN CLASS="application" >SCons</SPAN > does not, in fact, delete the target library before rebuilding it: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o f1.o -c f1.c cc -o f2.o -c f2.c cc -o f3.o -c f3.c ar rc libfoo.a f1.o f2.o f3.o </PRE ><P > <SPAN CLASS="application" >SCons</SPAN > will, however, still delete files marked as <CODE CLASS="function" >Precious</CODE > when the <TT CLASS="literal" >-c</TT > option is used. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3060" >15.2. Preventing target removal during clean: the <CODE CLASS="function" >NoClean</CODE > Function</A ></H2 ><P > By default, <SPAN CLASS="application" >SCons</SPAN > removes all built targets when invoked with the <TT CLASS="literal" >-c</TT > option to clean a source tree of built targets. Sometimes, however, this is not what you want. For example, you may want to remove only intermediate generated files (such as object files), but leave the final targets (the libraries) untouched. In such cases, you can use the <CODE CLASS="function" >NoClean</CODE > method to prevent <SPAN CLASS="application" >SCons</SPAN > from removing a target during a clean: </P ><PRE CLASS="programlisting" > env = Environment(RANLIBCOM='') lib = env.Library('foo', ['f1.c', 'f2.c', 'f3.c']) env.NoClean(lib) </PRE ><P > Notice that the <TT CLASS="filename" >libfoo.a</TT > is not listed as a removed file: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o f1.o -c f1.c cc -o f2.o -c f2.c cc -o f3.o -c f3.c ar rc libfoo.a f1.o f2.o f3.o % <KBD CLASS="userinput" >scons -c</KBD > scons: Reading SConscript files ... scons: done reading SConscript files. scons: Cleaning targets ... Removed f1.o Removed f2.o Removed f3.o scons: done cleaning targets. </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3074" >15.3. Removing additional files during clean: the <CODE CLASS="function" >Clean</CODE > Function</A ></H2 ><P > There may be additional files that you want removed when the <TT CLASS="literal" >-c</TT > option is used, but which <SPAN CLASS="application" >SCons</SPAN > doesn't know about because they're not normal target files. For example, perhaps a command you invoke creates a log file as part of building the target file you want. You would like the log file cleaned, but you don't want to have to teach SCons that the command "builds" two files. </P ><P > You can use the <CODE CLASS="function" >Clean</CODE > function to arrange for additional files to be removed when the <TT CLASS="literal" >-c</TT > option is used. Notice, however, that the <CODE CLASS="function" >Clean</CODE > function takes two arguments, and the <SPAN CLASS="emphasis" ><I CLASS="emphasis" >second</I ></SPAN > argument is the name of the additional file you want cleaned (<TT CLASS="filename" >foo.log</TT > in this example): </P ><PRE CLASS="programlisting" > t = Command('foo.out', 'foo.in', 'build -o $TARGET $SOURCE') Clean(t, 'foo.log') </PRE ><P > The first argument is the target with which you want the cleaning of this additional file associated. In the above example, we've used the return value from the <CODE CLASS="function" >Command</CODE > function, which represents the <TT CLASS="filename" >foo.out</TT > target. Now whenever the <TT CLASS="filename" >foo.out</TT > target is cleaned by the <TT CLASS="literal" >-c</TT > option, the <TT CLASS="filename" >foo.log</TT > file will be removed as well: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > build -o foo.out foo.in % <KBD CLASS="userinput" >scons -Q -c</KBD > Removed foo.out Removed foo.log </PRE ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-hierarchical" ></A >Chapter 16. Hierarchical Builds</H1 ><P > The source code for large software projects rarely stays in a single directory, but is nearly always divided into a hierarchy of directories. Organizing a large software build using <SPAN CLASS="application" >SCons</SPAN > involves creating a hierarchy of build scripts using the <TT CLASS="filename" >SConscript</TT > function. </P ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3101" >16.1. <TT CLASS="filename" >SConscript</TT > Files</A ></H2 ><P > As we've already seen, the build script at the top of the tree is called <TT CLASS="filename" >SConstruct</TT >. The top-level <TT CLASS="filename" >SConstruct</TT > file can use the <TT CLASS="filename" >SConscript</TT > function to include other subsidiary scripts in the build. These subsidiary scripts can, in turn, use the <TT CLASS="filename" >SConscript</TT > function to include still other scripts in the build. By convention, these subsidiary scripts are usually named <TT CLASS="filename" >SConscript</TT >. For example, a top-level <TT CLASS="filename" >SConstruct</TT > file might arrange for four subsidiary scripts to be included in the build as follows: </P ><PRE CLASS="programlisting" > SConscript(['drivers/display/SConscript', 'drivers/mouse/SConscript', 'parser/SConscript', 'utilities/SConscript']) </PRE ><P > In this case, the <TT CLASS="filename" >SConstruct</TT > file lists all of the <TT CLASS="filename" >SConscript</TT > files in the build explicitly. (Note, however, that not every directory in the tree necessarily has an <TT CLASS="filename" >SConscript</TT > file.) Alternatively, the <TT CLASS="literal" >drivers</TT > subdirectory might contain an intermediate <TT CLASS="filename" >SConscript</TT > file, in which case the <TT CLASS="filename" >SConscript</TT > call in the top-level <TT CLASS="filename" >SConstruct</TT > file would look like: </P ><PRE CLASS="programlisting" > SConscript(['drivers/SConscript', 'parser/SConscript', 'utilities/SConscript']) </PRE ><P > And the subsidiary <TT CLASS="filename" >SConscript</TT > file in the <TT CLASS="literal" >drivers</TT > subdirectory would look like: </P ><PRE CLASS="programlisting" > SConscript(['display/SConscript', 'mouse/SConscript']) </PRE ><P > Whether you list all of the <TT CLASS="filename" >SConscript</TT > files in the top-level <TT CLASS="filename" >SConstruct</TT > file, or place a subsidiary <TT CLASS="filename" >SConscript</TT > file in intervening directories, or use some mix of the two schemes, is up to you and the needs of your software. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3129" >16.2. Path Names Are Relative to the <TT CLASS="filename" >SConscript</TT > Directory</A ></H2 ><P > Subsidiary <TT CLASS="filename" >SConscript</TT > files make it easy to create a build hierarchy because all of the file and directory names in a subsidiary <TT CLASS="filename" >SConscript</TT > files are interpreted relative to the directory in which the <TT CLASS="filename" >SConscript</TT > file lives. Typically, this allows the <TT CLASS="filename" >SConscript</TT > file containing the instructions to build a target file to live in the same directory as the source files from which the target will be built, making it easy to update how the software is built whenever files are added or deleted (or other changes are made). </P ><P > For example, suppose we want to build two programs <TT CLASS="filename" >prog1</TT > and <TT CLASS="filename" >prog2</TT > in two separate directories with the same names as the programs. One typical way to do this would be with a top-level <TT CLASS="filename" >SConstruct</TT > file like this: </P ><PRE CLASS="programlisting" > SConscript(['prog1/SConscript', 'prog2/SConscript']) </PRE ><P > And subsidiary <TT CLASS="filename" >SConscript</TT > files that look like this: </P ><PRE CLASS="programlisting" > env = Environment() env.Program('prog1', ['main.c', 'foo1.c', 'foo2.c']) </PRE ><P > And this: </P ><PRE CLASS="programlisting" > env = Environment() env.Program('prog2', ['main.c', 'bar1.c', 'bar2.c']) </PRE ><P > Then, when we run <SPAN CLASS="application" >SCons</SPAN > in the top-level directory, our build looks like: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o prog1/foo1.o -c prog1/foo1.c cc -o prog1/foo2.o -c prog1/foo2.c cc -o prog1/main.o -c prog1/main.c cc -o prog1/prog1 prog1/main.o prog1/foo1.o prog1/foo2.o cc -o prog2/bar1.o -c prog2/bar1.c cc -o prog2/bar2.o -c prog2/bar2.c cc -o prog2/main.o -c prog2/main.c cc -o prog2/prog2 prog2/main.o prog2/bar1.o prog2/bar2.o </PRE ><P > Notice the following: First, you can have files with the same names in multiple directories, like main.c in the above example. Second, unlike standard recursive use of <SPAN CLASS="application" >Make</SPAN >, <SPAN CLASS="application" >SCons</SPAN > stays in the top-level directory (where the <TT CLASS="filename" >SConstruct</TT > file lives) and issues commands that use the path names from the top-level directory to the target and source files within the hierarchy. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3155" >16.3. Top-Level Path Names in Subsidiary <TT CLASS="filename" >SConscript</TT > Files</A ></H2 ><P > If you need to use a file from another directory, it's sometimes more convenient to specify the path to a file in another directory from the top-level <TT CLASS="filename" >SConstruct</TT > directory, even when you're using that file in a subsidiary <TT CLASS="filename" >SConscript</TT > file in a subdirectory. You can tell <SPAN CLASS="application" >SCons</SPAN > to interpret a path name as relative to the top-level <TT CLASS="filename" >SConstruct</TT > directory, not the local directory of the <TT CLASS="filename" >SConscript</TT > file, by appending a <TT CLASS="literal" >#</TT > (hash mark) to the beginning of the path name: </P ><PRE CLASS="programlisting" > env = Environment() env.Program('prog', ['main.c', '#lib/foo1.c', 'foo2.c']) </PRE ><P > In this example, the <TT CLASS="literal" >lib</TT > directory is directly underneath the top-level <TT CLASS="filename" >SConstruct</TT > directory. If the above <TT CLASS="filename" >SConscript</TT > file is in a subdirectory named <TT CLASS="literal" >src/prog</TT >, the output would look like: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o lib/foo1.o -c lib/foo1.c cc -o src/prog/foo2.o -c src/prog/foo2.c cc -o src/prog/main.o -c src/prog/main.c cc -o src/prog/prog src/prog/main.o lib/foo1.o src/prog/foo2.o </PRE ><P > (Notice that the <TT CLASS="literal" >lib/foo1.o</TT > object file is built in the same directory as its source file. See <A HREF="#chap-separate" >Chapter 17</A >, below, for information about how to build the object file in a different subdirectory.) </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3176" >16.4. Absolute Path Names</A ></H2 ><P > Of course, you can always specify an absolute path name for a file--for example: </P ><PRE CLASS="programlisting" > env = Environment() env.Program('prog', ['main.c', '/usr/joe/lib/foo1.c', 'foo2.c']) </PRE ><P > Which, when executed, would yield: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o src/prog/foo2.o -c src/prog/foo2.c cc -o src/prog/main.o -c src/prog/main.c cc -o /usr/joe/lib/foo1.o -c /usr/joe/lib/foo1.c cc -o src/prog/prog src/prog/main.o /usr/joe/lib/foo1.o src/prog/foo2.o </PRE ><P > (As was the case with top-relative path names, notice that the <TT CLASS="literal" >/usr/joe/lib/foo1.o</TT > object file is built in the same directory as its source file. See <A HREF="#chap-separate" >Chapter 17</A >, below, for information about how to build the object file in a different subdirectory.) </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3186" >16.5. Sharing Environments (and Other Variables) Between <TT CLASS="filename" >SConscript</TT > Files</A ></H2 ><P > In the previous example, each of the subsidiary <TT CLASS="filename" >SConscript</TT > files created its own construction environment by calling <CODE CLASS="function" >Environment</CODE > separately. This obviously works fine, but if each program must be built with the same construction variables, it's cumbersome and error-prone to initialize separate construction environments in the same way over and over in each subsidiary <TT CLASS="filename" >SConscript</TT > file. </P ><P > <SPAN CLASS="application" >SCons</SPAN > supports the ability to <SPAN CLASS="emphasis" ><I CLASS="emphasis" >export</I ></SPAN > variables from a parent <TT CLASS="filename" >SConscript</TT > file to its subsidiary <TT CLASS="filename" >SConscript</TT > files, which allows you to share common initialized values throughout your build hierarchy. </P ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN3198" >16.5.1. Exporting Variables</A ></H3 ><P > There are two ways to export a variable, such as a construction environment, from an <TT CLASS="filename" >SConscript</TT > file, so that it may be used by other <TT CLASS="filename" >SConscript</TT > files. First, you can call the <CODE CLASS="function" >Export</CODE > function with a list of variables, or a string of white-space separated variable names. Each call to <CODE CLASS="function" >Export</CODE > adds one or more variables to a global list of variables that are available for import by other <TT CLASS="filename" >SConscript</TT > files. </P ><PRE CLASS="programlisting" > env = Environment() Export('env') </PRE ><P > You may export more than one variable name at a time: </P ><PRE CLASS="programlisting" > env = Environment() debug = ARGUMENTS['debug'] Export('env', 'debug') </PRE ><P > Because white space is not legal in Python variable names, the <CODE CLASS="function" >Export</CODE > function will even automatically split a string into separate names for you: </P ><PRE CLASS="programlisting" > Export('env debug') </PRE ><P > Second, you can specify a list of variables to export as a second argument to the <TT CLASS="filename" >SConscript</TT > function call: </P ><PRE CLASS="programlisting" > SConscript('src/SConscript', 'env') </PRE ><P > Or as the <CODE CLASS="varname" >exports</CODE > keyword argument: </P ><PRE CLASS="programlisting" > SConscript('src/SConscript', exports='env') </PRE ><P > These calls export the specified variables to only the listed <TT CLASS="filename" >SConscript</TT > files. You may, however, specify more than one <TT CLASS="filename" >SConscript</TT > file in a list: </P ><PRE CLASS="programlisting" > SConscript(['src1/SConscript', 'src2/SConscript'], exports='env') </PRE ><P > This is functionally equivalent to calling the <TT CLASS="filename" >SConscript</TT > function multiple times with the same <CODE CLASS="varname" >exports</CODE > argument, one per <TT CLASS="filename" >SConscript</TT > file. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN3226" >16.5.2. Importing Variables</A ></H3 ><P > Once a variable has been exported from a calling <TT CLASS="filename" >SConscript</TT > file, it may be used in other <TT CLASS="filename" >SConscript</TT > files by calling the <CODE CLASS="function" >Import</CODE > function: </P ><PRE CLASS="programlisting" > Import('env') env.Program('prog', ['prog.c']) </PRE ><P > The <CODE CLASS="function" >Import</CODE > call makes the <TT CLASS="literal" >env</TT > construction environment available to the <TT CLASS="filename" >SConscript</TT > file, after which the variable can be used to build programs, libraries, etc. </P ><P > Like the <CODE CLASS="function" >Export</CODE > function, the <CODE CLASS="function" >Import</CODE > function can be used with multiple variable names: </P ><PRE CLASS="programlisting" > Import('env', 'debug') env = env.Clone(DEBUG = debug) env.Program('prog', ['prog.c']) </PRE ><P > And the <CODE CLASS="function" >Import</CODE > function will similarly split a string along white-space into separate variable names: </P ><PRE CLASS="programlisting" > Import('env debug') env = env.Clone(DEBUG = debug) env.Program('prog', ['prog.c']) </PRE ><P > Lastly, as a special case, you may import all of the variables that have been exported by supplying an asterisk to the <CODE CLASS="function" >Import</CODE > function: </P ><PRE CLASS="programlisting" > Import('*') env = env.Clone(DEBUG = debug) env.Program('prog', ['prog.c']) </PRE ><P > If you're dealing with a lot of <TT CLASS="filename" >SConscript</TT > files, this can be a lot simpler than keeping arbitrary lists of imported variables in each file. </P ></DIV ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN3249" >16.5.3. Returning Values From an <TT CLASS="filename" >SConscript</TT > File</A ></H3 ><P > Sometimes, you would like to be able to use information from a subsidiary <TT CLASS="filename" >SConscript</TT > file in some way. For example, suppose that you want to create one library from source files scattered throughout a number of subsidiary <TT CLASS="filename" >SConscript</TT > files. You can do this by using the <CODE CLASS="function" >Return</CODE > function to return values from the subsidiary <TT CLASS="filename" >SConscript</TT > files to the calling file. </P ><P > If, for example, we have two subdirectories <SPAN CLASS="application" >foo</SPAN > and <SPAN CLASS="application" >bar</SPAN > that should each contribute a source file to a Library, what we'd like to be able to do is collect the object files from the subsidiary <TT CLASS="filename" >SConscript</TT > calls like this: </P ><PRE CLASS="programlisting" > env = Environment() Export('env') objs = [] for subdir in ['foo', 'bar']: o = SConscript('%s/SConscript' % subdir) objs.append(o) env.Library('prog', objs) </PRE ><P > We can do this by using the <CODE CLASS="function" >Return</CODE > function in the <TT CLASS="literal" >foo/SConscript</TT > file like this: </P ><PRE CLASS="programlisting" > Import('env') obj = env.Object('foo.c') Return('obj') </PRE ><P > (The corresponding <TT CLASS="literal" >bar/SConscript</TT > file should be pretty obvious.) Then when we run <SPAN CLASS="application" >SCons</SPAN >, the object files from the subsidiary subdirectories are all correctly archived in the desired library: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o bar/bar.o -c bar/bar.c cc -o foo/foo.o -c foo/foo.c ar rc libprog.a foo/foo.o bar/bar.o ranlib libprog.a </PRE ></DIV ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-separate" ></A >Chapter 17. Separating Source and Build Directories</H1 ><P > It's often useful to keep any built files completely separate from the source files. In <SPAN CLASS="application" >SCons</SPAN >, this is usually done by creating one or more separate <SPAN CLASS="emphasis" ><I CLASS="emphasis" >variant directory trees</I ></SPAN > that are used to hold the built objects files, libraries, and executable programs, etc. for a specific flavor, or variant, of build. <SPAN CLASS="application" >SCons</SPAN > provides two ways to do this, one through the <TT CLASS="filename" >SConscript</TT > function that we've already seen, and the second through a more flexible <CODE CLASS="function" >VariantDir</CODE > function. </P ><P > One historical note: the <CODE CLASS="function" >VariantDir</CODE > function used to be called <CODE CLASS="function" >BuildDir</CODE >. That name is still supported but has been deprecated because the <SPAN CLASS="application" >SCons</SPAN > functionality differs from the model of a "build directory" implemented by other build systems like the GNU Autotools. </P ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3283" >17.1. Specifying a Variant Directory Tree as Part of an <TT CLASS="filename" >SConscript</TT > Call</A ></H2 ><P > The most straightforward way to establish a variant directory tree uses the fact that the usual way to set up a build hierarchy is to have an <TT CLASS="filename" >SConscript</TT > file in the source subdirectory. If you then pass a <CODE CLASS="varname" >variant_dir</CODE > argument to the <TT CLASS="filename" >SConscript</TT > function call: </P ><PRE CLASS="programlisting" > SConscript('src/SConscript', variant_dir='build') </PRE ><P > <SPAN CLASS="application" >SCons</SPAN > will then build all of the files in the <TT CLASS="filename" >build</TT > subdirectory: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >ls src</KBD > SConscript hello.c % <KBD CLASS="userinput" >scons -Q</KBD > cc -o build/hello.o -c build/hello.c cc -o build/hello build/hello.o % <KBD CLASS="userinput" >ls build</KBD > SConscript hello hello.c hello.o </PRE ><P > But wait a minute--what's going on here? <SPAN CLASS="application" >SCons</SPAN > created the object file <TT CLASS="filename" >build/hello.o</TT > in the <TT CLASS="filename" >build</TT > subdirectory, as expected. But even though our <TT CLASS="filename" >hello.c</TT > file lives in the <TT CLASS="filename" >src</TT > subdirectory, <SPAN CLASS="application" >SCons</SPAN > has actually compiled a <TT CLASS="filename" >build/hello.c</TT > file to create the object file. </P ><P > What's happened is that <SPAN CLASS="application" >SCons</SPAN > has <SPAN CLASS="emphasis" ><I CLASS="emphasis" >duplicated</I ></SPAN > the <TT CLASS="filename" >hello.c</TT > file from the <TT CLASS="filename" >src</TT > subdirectory to the <TT CLASS="filename" >build</TT > subdirectory, and built the program from there. The next section explains why <SPAN CLASS="application" >SCons</SPAN > does this. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3313" >17.2. Why <SPAN CLASS="application" >SCons</SPAN > Duplicates Source Files in a Variant Directory Tree</A ></H2 ><P > <SPAN CLASS="application" >SCons</SPAN > duplicates source files in variant directory trees because it's the most straightforward way to guarantee a correct build <SPAN CLASS="emphasis" ><I CLASS="emphasis" >regardless of include-file directory paths, relative references between files, or tool support for putting files in different locations</I ></SPAN >, and the <SPAN CLASS="application" >SCons</SPAN > philosophy is to, by default, guarantee a correct build in all cases. </P ><P > The most direct reason to duplicate source files in variant directories is simply that some tools (mostly older vesions) are written to only build their output files in the same directory as the source files. In this case, the choices are either to build the output file in the source directory and move it to the variant directory, or to duplicate the source files in the variant directory. </P ><P > Additionally, relative references between files can cause problems if we don't just duplicate the hierarchy of source files in the variant directory. You can see this at work in use of the C preprocessor <TT CLASS="literal" >#include</TT > mechanism with double quotes, not angle brackets: </P ><PRE CLASS="programlisting" > #include "file.h" </PRE ><P > The <SPAN CLASS="emphasis" ><I CLASS="emphasis" >de facto</I ></SPAN > standard behavior for most C compilers in this case is to first look in the same directory as the source file that contains the <TT CLASS="literal" >#include</TT > line, then to look in the directories in the preprocessor search path. Add to this that the <SPAN CLASS="application" >SCons</SPAN > implementation of support for code repositories (described below) means not all of the files will be found in the same directory hierarchy, and the simplest way to make sure that the right include file is found is to duplicate the source files into the variant directory, which provides a correct build regardless of the original location(s) of the source files. </P ><P > Although source-file duplication guarantees a correct build even in these end-cases, it <SPAN CLASS="emphasis" ><I CLASS="emphasis" >can</I ></SPAN > usually be safely disabled. The next section describes how you can disable the duplication of source files in the variant directory. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3330" >17.3. Telling <SPAN CLASS="application" >SCons</SPAN > to Not Duplicate Source Files in the Variant Directory Tree</A ></H2 ><P > In most cases and with most tool sets, <SPAN CLASS="application" >SCons</SPAN > can place its target files in a build subdirectory <SPAN CLASS="emphasis" ><I CLASS="emphasis" >without</I ></SPAN > duplicating the source files and everything will work just fine. You can disable the default <SPAN CLASS="application" >SCons</SPAN > behavior by specifying <TT CLASS="literal" >duplicate=0</TT > when you call the <TT CLASS="filename" >SConscript</TT > function: </P ><PRE CLASS="programlisting" > SConscript('src/SConscript', variant_dir='build', duplicate=0) </PRE ><P > When this flag is specified, <SPAN CLASS="application" >SCons</SPAN > uses the variant directory like most people expect--that is, the output files are placed in the variant directory while the source files stay in the source directory: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >ls src</KBD > SConscript hello.c % <KBD CLASS="userinput" >scons -Q</KBD > cc -c src/hello.c -o build/hello.o cc -o build/hello build/hello.o % <KBD CLASS="userinput" >ls build</KBD > hello hello.o </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3346" >17.4. The <CODE CLASS="function" >VariantDir</CODE > Function</A ></H2 ><P > Use the <CODE CLASS="function" >VariantDir</CODE > function to establish that target files should be built in a separate directory from the source files: </P ><PRE CLASS="programlisting" > VariantDir('build', 'src') env = Environment() env.Program('build/hello.c') </PRE ><P > Note that when you're not using an <TT CLASS="filename" >SConscript</TT > file in the <TT CLASS="filename" >src</TT > subdirectory, you must actually specify that the program must be built from the <TT CLASS="filename" >build/hello.c</TT > file that <SPAN CLASS="application" >SCons</SPAN > will duplicate in the <TT CLASS="filename" >build</TT > subdirectory. </P ><P > When using the <CODE CLASS="function" >VariantDir</CODE > function directly, <SPAN CLASS="application" >SCons</SPAN > still duplicates the source files in the variant directory by default: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >ls src</KBD > hello.c % <KBD CLASS="userinput" >scons -Q</KBD > cc -o build/hello.o -c build/hello.c cc -o build/hello build/hello.o % <KBD CLASS="userinput" >ls build</KBD > hello hello.c hello.o </PRE ><P > You can specify the same <TT CLASS="literal" >duplicate=0</TT > argument that you can specify for an <TT CLASS="filename" >SConscript</TT > call: </P ><PRE CLASS="programlisting" > VariantDir('build', 'src', duplicate=0) env = Environment() env.Program('build/hello.c') </PRE ><P > In which case <SPAN CLASS="application" >SCons</SPAN > will disable duplication of the source files: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >ls src</KBD > hello.c % <KBD CLASS="userinput" >scons -Q</KBD > cc -o build/hello.o -c src/hello.c cc -o build/hello build/hello.o % <KBD CLASS="userinput" >ls build</KBD > hello hello.o </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3375" >17.5. Using <CODE CLASS="function" >VariantDir</CODE > With an <TT CLASS="filename" >SConscript</TT > File</A ></H2 ><P > Even when using the <CODE CLASS="function" >VariantDir</CODE > function, it's much more natural to use it with a subsidiary <TT CLASS="filename" >SConscript</TT > file. For example, if the <TT CLASS="filename" >src/SConscript</TT > looks like this: </P ><PRE CLASS="programlisting" > env = Environment() env.Program('hello.c') </PRE ><P > Then our <TT CLASS="filename" >SConstruct</TT > file could look like: </P ><PRE CLASS="programlisting" > VariantDir('build', 'src') SConscript('build/SConscript') </PRE ><P > Yielding the following output: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >ls src</KBD > SConscript hello.c % <KBD CLASS="userinput" >scons -Q</KBD > cc -o build/hello.o -c build/hello.c cc -o build/hello build/hello.o % <KBD CLASS="userinput" >ls build</KBD > SConscript hello hello.c hello.o </PRE ><P > Notice that this is completely equivalent to the use of <TT CLASS="filename" >SConscript</TT > that we learned about in the previous section. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3394" >17.6. Using <CODE CLASS="function" >Glob</CODE > with <CODE CLASS="function" >VariantDir</CODE ></A ></H2 ><P > The <CODE CLASS="function" >Glob</CODE > file name pattern matching function works just as usual when using <CODE CLASS="function" >VariantDir</CODE >. For example, if the <TT CLASS="filename" >src/SConscript</TT > looks like this: </P ><PRE CLASS="programlisting" > env = Environment() env.Program('hello', Glob('*.c')) </PRE ><P > Then with the same <TT CLASS="filename" >SConstruct</TT > file as in the previous section, and source files <TT CLASS="filename" >f1.c</TT > and <TT CLASS="filename" >f2.c</TT > in src, we would see the following output: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >ls src</KBD > SConscript f1.c f2.c f2.h % <KBD CLASS="userinput" >scons -Q</KBD > cc -o build/f1.o -c build/f1.c cc -o build/f2.o -c build/f2.c cc -o build/hello build/f1.o build/f2.o % <KBD CLASS="userinput" >ls build</KBD > SConscript f1.c f1.o f2.c f2.h f2.o hello </PRE ><P > The <CODE CLASS="function" >Glob</CODE > function returns Nodes in the <TT CLASS="filename" >build/</TT > tree, as you'd expect. </P ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-variants" ></A >Chapter 18. Variant Builds</H1 ><P > The <CODE CLASS="varname" >variant_dir</CODE > keyword argument of the <TT CLASS="filename" >SConscript</TT > function provides everything we need to show how easy it is to create variant builds using <SPAN CLASS="application" >SCons</SPAN >. Suppose, for example, that we want to build a program for both Windows and Linux platforms, but that we want to build it in a shared directory with separate side-by-side build directories for the Windows and Linux versions of the program. </P ><PRE CLASS="programlisting" > platform = ARGUMENTS.get('OS', Platform()) include = "#export/$PLATFORM/include" lib = "#export/$PLATFORM/lib" bin = "#export/$PLATFORM/bin" env = Environment(PLATFORM = platform, BINDIR = bin, INCDIR = include, LIBDIR = lib, CPPPATH = [include], LIBPATH = [lib], LIBS = 'world') Export('env') env.SConscript('src/SConscript', variant_dir='build/$PLATFORM') </PRE ><P > This SConstruct file, when run on a Linux system, yields: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q OS=linux</KBD > Install file: "build/linux/world/world.h" as "export/linux/include/world.h" cc -o build/linux/hello/hello.o -c -Iexport/linux/include build/linux/hello/hello.c cc -o build/linux/world/world.o -c -Iexport/linux/include build/linux/world/world.c ar rc build/linux/world/libworld.a build/linux/world/world.o ranlib build/linux/world/libworld.a Install file: "build/linux/world/libworld.a" as "export/linux/lib/libworld.a" cc -o build/linux/hello/hello build/linux/hello/hello.o -Lexport/linux/lib -lworld Install file: "build/linux/hello/hello" as "export/linux/bin/hello" </PRE ><P > The same SConstruct file on Windows would build: </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >scons -Q OS=windows</KBD > Install file: "build/windows/world/world.h" as "export/windows/include/world.h" cl /nologo /Iexport\windows\include /c build\windows\hello\hello.c /Fobuild\windows\hello\hello.obj cl /nologo /Iexport\windows\include /c build\windows\world\world.c /Fobuild\windows\world\world.obj lib /nologo /OUT:build\windows\world\world.lib build\windows\world\world.obj Install file: "build/windows/world/world.lib" as "export/windows/lib/world.lib" link /nologo /OUT:build\windows\hello\hello.exe /LIBPATH:export\windows\lib world.lib build\windows\hello\hello.obj Install file: "build/windows/hello/hello.exe" as "export/windows/bin/hello.exe" </PRE ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-builders-writing" ></A >Chapter 19. Writing Your Own Builders</H1 ><P > Although <SPAN CLASS="application" >SCons</SPAN > provides many useful methods for building common software products: programs, libraries, documents. you frequently want to be able to build some other type of file not supported directly by <SPAN CLASS="application" >SCons</SPAN > Fortunately, <SPAN CLASS="application" >SCons</SPAN > makes it very easy to define your own <CODE CLASS="classname" >Builder</CODE > objects for any custom file types you want to build. (In fact, the <SPAN CLASS="application" >SCons</SPAN > interfaces for creating <CODE CLASS="classname" >Builder</CODE > objects are flexible enough and easy enough to use that all of the the <SPAN CLASS="application" >SCons</SPAN > built-in <CODE CLASS="classname" >Builder</CODE > objects are created the mechanisms described in this section.) </P ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3438" >19.1. Writing Builders That Execute External Commands</A ></H2 ><P > The simplest <CODE CLASS="classname" >Builder</CODE > to create is one that executes an external command. For example, if we want to build an output file by running the contents of the input file through a command named <TT CLASS="literal" >foobuild</TT >, creating that <CODE CLASS="classname" >Builder</CODE > might look like: </P ><PRE CLASS="programlisting" > bld = Builder(action = 'foobuild < $SOURCE > $TARGET') </PRE ><P > All the above line does is create a free-standing <CODE CLASS="classname" >Builder</CODE > object. The next section will show us how to actually use it. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3447" >19.2. Attaching a Builder to a <TT CLASS="literal" >Construction Environment</TT ></A ></H2 ><P > A <CODE CLASS="classname" >Builder</CODE > object isn't useful until it's attached to a <TT CLASS="literal" >construction environment</TT > so that we can call it to arrange for files to be built. This is done through the <A HREF="#cv-BUILDERS" ><CODE CLASS="envar" >$BUILDERS</CODE ></A > <TT CLASS="literal" >construction variable</TT > in an environment. The <CODE CLASS="envar" >$BUILDERS</CODE > variable is a Python dictionary that maps the names by which you want to call various <CODE CLASS="classname" >Builder</CODE > objects to the objects themselves. For example, if we want to call the <CODE CLASS="classname" >Builder</CODE > we just defined by the name <CODE CLASS="function" >Foo</CODE >, our <TT CLASS="filename" >SConstruct</TT > file might look like: </P ><PRE CLASS="programlisting" > bld = Builder(action = 'foobuild < $SOURCE > $TARGET') env = Environment(BUILDERS = {'Foo' : bld}) </PRE ><P > With the <CODE CLASS="classname" >Builder</CODE > so attached to our <TT CLASS="literal" >construction environment</TT > we can now actually call it like so: </P ><PRE CLASS="programlisting" > env.Foo('file.foo', 'file.input') </PRE ><P > Then when we run <SPAN CLASS="application" >SCons</SPAN > it looks like: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > foobuild < file.input > file.foo </PRE ><P > Note, however, that the default <CODE CLASS="envar" >$BUILDERS</CODE > variable in a <TT CLASS="literal" >construction environment</TT > comes with a default set of <CODE CLASS="classname" >Builder</CODE > objects already defined: <A HREF="#b-Program" ><CODE CLASS="function" >Program</CODE ></A >, <A HREF="#b-Library" ><CODE CLASS="function" >Library</CODE ></A >, etc. And when we explicitly set the <CODE CLASS="envar" >$BUILDERS</CODE > variable when we create the <TT CLASS="literal" >construction environment</TT >, the default <CODE CLASS="classname" >Builder</CODE >s are no longer part of the environment: </P ><PRE CLASS="programlisting" > bld = Builder(action = 'foobuild < $SOURCE > $TARGET') env = Environment(BUILDERS = {'Foo' : bld}) env.Foo('file.foo', 'file.input') env.Program('hello.c') </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > AttributeError: SConsEnvironment instance has no attribute 'Program': File "/home/my/project/SConstruct", line 4: env.Program('hello.c') </PRE ><P > To be able to use both our own defined <CODE CLASS="classname" >Builder</CODE > objects and the default <CODE CLASS="classname" >Builder</CODE > objects in the same <TT CLASS="literal" >construction environment</TT >, you can either add to the <CODE CLASS="envar" >$BUILDERS</CODE > variable using the <CODE CLASS="function" >Append</CODE > function: </P ><PRE CLASS="programlisting" > env = Environment() bld = Builder(action = 'foobuild < $SOURCE > $TARGET') env.Append(BUILDERS = {'Foo' : bld}) env.Foo('file.foo', 'file.input') env.Program('hello.c') </PRE ><P > Or you can explicitly set the appropriately-named key in the <CODE CLASS="envar" >$BUILDERS</CODE > dictionary: </P ><PRE CLASS="programlisting" > env = Environment() bld = Builder(action = 'foobuild < $SOURCE > $TARGET') env['BUILDERS']['Foo'] = bld env.Foo('file.foo', 'file.input') env.Program('hello.c') </PRE ><P > Either way, the same <TT CLASS="literal" >construction environment</TT > can then use both the newly-defined <CODE CLASS="function" >Foo</CODE > <CODE CLASS="classname" >Builder</CODE > and the default <A HREF="#b-Program" ><CODE CLASS="function" >Program</CODE ></A > <CODE CLASS="classname" >Builder</CODE >: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > foobuild < file.input > file.foo cc -o hello.o -c hello.c cc -o hello hello.o </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3503" >19.3. Letting <SPAN CLASS="application" >SCons</SPAN > Handle The File Suffixes</A ></H2 ><P > By supplying additional information when you create a <CODE CLASS="classname" >Builder</CODE >, you can let <SPAN CLASS="application" >SCons</SPAN > add appropriate file suffixes to the target and/or the source file. For example, rather than having to specify explicitly that you want the <TT CLASS="literal" >Foo</TT > <CODE CLASS="classname" >Builder</CODE > to build the <TT CLASS="literal" >file.foo</TT > target file from the <TT CLASS="literal" >file.input</TT > source file, you can give the <TT CLASS="literal" >.foo</TT > and <TT CLASS="literal" >.input</TT > suffixes to the <CODE CLASS="classname" >Builder</CODE >, making for more compact and readable calls to the <TT CLASS="literal" >Foo</TT > <CODE CLASS="classname" >Builder</CODE >: </P ><PRE CLASS="programlisting" > bld = Builder(action = 'foobuild < $SOURCE > $TARGET', suffix = '.foo', src_suffix = '.input') env = Environment(BUILDERS = {'Foo' : bld}) env.Foo('file1') env.Foo('file2') </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > foobuild < file1.input > file1.foo foobuild < file2.input > file2.foo </PRE ><P > You can also supply a <TT CLASS="literal" >prefix</TT > keyword argument if it's appropriate to have <SPAN CLASS="application" >SCons</SPAN > append a prefix to the beginning of target file names. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3524" >19.4. Builders That Execute Python Functions</A ></H2 ><P > In <SPAN CLASS="application" >SCons</SPAN >, you don't have to call an external command to build a file. You can, instead, define a Python function that a <CODE CLASS="classname" >Builder</CODE > object can invoke to build your target file (or files). Such a <TT CLASS="literal" >builder function</TT > definition looks like: </P ><PRE CLASS="programlisting" > def build_function(target, source, env): # Code to build "target" from "source" return None </PRE ><P > The arguments of a <TT CLASS="literal" >builder function</TT > are: </P ><P ></P ><DIV CLASS="variablelist" ><DL ><DT >target</DT ><DD ><P > A list of Node objects representing the target or targets to be built by this builder function. The file names of these target(s) may be extracted using the Python <CODE CLASS="function" >str</CODE > function. </P ></DD ><DT >source</DT ><DD ><P > A list of Node objects representing the sources to be used by this builder function to build the targets. The file names of these source(s) may be extracted using the Python <CODE CLASS="function" >str</CODE > function. </P ></DD ><DT >env</DT ><DD ><P > The <TT CLASS="literal" >construction environment</TT > used for building the target(s). The builder function may use any of the environment's construction variables in any way to affect how it builds the targets. </P ></DD ></DL ></DIV ><P > The builder function must return a <TT CLASS="literal" >0</TT > or <TT CLASS="literal" >None</TT > value if the target(s) are built successfully. The builder function may raise an exception or return any non-zero value to indicate that the build is unsuccessful, </P ><P > Once you've defined the Python function that will build your target file, defining a <CODE CLASS="classname" >Builder</CODE > object for it is as simple as specifying the name of the function, instead of an external command, as the <CODE CLASS="classname" >Builder</CODE >'s <TT CLASS="literal" >action</TT > argument: </P ><PRE CLASS="programlisting" > def build_function(target, source, env): # Code to build "target" from "source" return None bld = Builder(action = build_function, suffix = '.foo', src_suffix = '.input') env = Environment(BUILDERS = {'Foo' : bld}) env.Foo('file') </PRE ><P > And notice that the output changes slightly, reflecting the fact that a Python function, not an external command, is now called to build the target file: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > build_function(["file.foo"], ["file.input"]) </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3560" >19.5. Builders That Create Actions Using a <TT CLASS="literal" >Generator</TT ></A ></H2 ><P > <SPAN CLASS="application" >SCons</SPAN > Builder objects can create an action "on the fly" by using a function called a <TT CLASS="literal" >generator</TT >. This provides a great deal of flexibility to construct just the right list of commands to build your target. A <TT CLASS="literal" >generator</TT > looks like: </P ><PRE CLASS="programlisting" > def generate_actions(source, target, env, for_signature): return 'foobuild < %s > %s' % (target[0], source[0]) </PRE ><P > The arguments of a <TT CLASS="literal" >generator</TT > are: </P ><P ></P ><DIV CLASS="variablelist" ><DL ><DT >source</DT ><DD ><P > A list of Node objects representing the sources to be built by the command or other action generated by this function. The file names of these source(s) may be extracted using the Python <CODE CLASS="function" >str</CODE > function. </P ></DD ><DT >target</DT ><DD ><P > A list of Node objects representing the target or targets to be built by the command or other action generated by this function. The file names of these target(s) may be extracted using the Python <CODE CLASS="function" >str</CODE > function. </P ></DD ><DT >env</DT ><DD ><P > The <TT CLASS="literal" >construction environment</TT > used for building the target(s). The generator may use any of the environment's construction variables in any way to determine what command or other action to return. </P ></DD ><DT >for_signature</DT ><DD ><P > A flag that specifies whether the generator is being called to contribute to a build signature, as opposed to actually executing the command. </P ></DD ></DL ></DIV ><P > The <TT CLASS="literal" >generator</TT > must return a command string or other action that will be used to build the specified target(s) from the specified source(s). </P ><P > Once you've defined a <TT CLASS="literal" >generator</TT >, you create a <CODE CLASS="classname" >Builder</CODE > to use it by specifying the generator keyword argument instead of <TT CLASS="literal" >action</TT >. </P ><PRE CLASS="programlisting" > def generate_actions(source, target, env, for_signature): return 'foobuild < %s > %s' % (source[0], target[0]) bld = Builder(generator = generate_actions, suffix = '.foo', src_suffix = '.input') env = Environment(BUILDERS = {'Foo' : bld}) env.Foo('file') </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > foobuild < file.input > file.foo </PRE ><P > Note that it's illegal to specify both an <TT CLASS="literal" >action</TT > and a <TT CLASS="literal" >generator</TT > for a <CODE CLASS="classname" >Builder</CODE >. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3603" >19.6. Builders That Modify the Target or Source Lists Using an <TT CLASS="literal" >Emitter</TT ></A ></H2 ><P > <SPAN CLASS="application" >SCons</SPAN > supports the ability for a Builder to modify the lists of target(s) from the specified source(s). You do this by defining an <TT CLASS="literal" >emitter</TT > function that takes as its arguments the list of the targets passed to the builder, the list of the sources passed to the builder, and the construction environment. The emitter function should return the modified lists of targets that should be built and sources from which the targets will be built. </P ><P > For example, suppose you want to define a Builder that always calls a <TT CLASS="filename" >foobuild</TT > program, and you want to automatically add a new target file named <TT CLASS="filename" >new_target</TT > and a new source file named <TT CLASS="filename" >new_source</TT > whenever it's called. The <TT CLASS="filename" >SConstruct</TT > file might look like this: </P ><PRE CLASS="programlisting" > def modify_targets(target, source, env): target.append('new_target') source.append('new_source') return target, source bld = Builder(action = 'foobuild $TARGETS - $SOURCES', suffix = '.foo', src_suffix = '.input', emitter = modify_targets) env = Environment(BUILDERS = {'Foo' : bld}) env.Foo('file') </PRE ><P > And would yield the following output: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > foobuild file.foo new_target - file.input new_source </PRE ><P > One very flexible thing that you can is specify use a construction variable to specify different emitter functions for different construction variable. To do this, specify a string containing a construction variable expansion as the emitter when you call the <CODE CLASS="classname" >Builder</CODE > function, and set that construction variable to the desired emitter function in different construction environments: </P ><PRE CLASS="programlisting" > bld = Builder(action = 'my_command $SOURCES > $TARGET', suffix = '.foo', src_suffix = '.input', emitter = '$MY_EMITTER') def modify1(target, source, env): return target, source + ['modify1.in'] def modify2(target, source, env): return target, source + ['modify2.in'] env1 = Environment(BUILDERS = {'Foo' : bld}, MY_EMITTER = modify1) env2 = Environment(BUILDERS = {'Foo' : bld}, MY_EMITTER = modify2) env1.Foo('file1') env2.Foo('file2') import os env1['ENV']['PATH'] = env2['ENV']['PATH'] + os.pathsep + os.getcwd() env2['ENV']['PATH'] = env2['ENV']['PATH'] + os.pathsep + os.getcwd() </PRE ><PRE CLASS="programlisting" > bld = Builder(action = 'my_command $SOURCES > $TARGET', suffix = '.foo', src_suffix = '.input', emitter = '$MY_EMITTER') def modify1(target, source, env): return target, source + ['modify1.in'] def modify2(target, source, env): return target, source + ['modify2.in'] env1 = Environment(BUILDERS = {'Foo' : bld}, MY_EMITTER = modify1) env2 = Environment(BUILDERS = {'Foo' : bld}, MY_EMITTER = modify2) env1.Foo('file1') env2.Foo('file2') </PRE ><P > In this example, the <TT CLASS="filename" >modify1.in</TT > and <TT CLASS="filename" >modify2.in</TT > files get added to the source lists of the different commands: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > my_command file1.input modify1.in > file1.foo my_command file2.input modify2.in > file2.foo </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3627" >19.7. Where To Put Your Custom Builders and Tools</A ></H2 ><P > The <TT CLASS="filename" >site_scons</TT > directory gives you a place to put Python modules you can import into your SConscripts (site_scons), add-on tools that can integrate into <SPAN CLASS="application" >SCons</SPAN > (site_scons/site_tools), and a site_scons/site_init.py file that gets read before any <TT CLASS="filename" >SConstruct</TT > or <TT CLASS="filename" >SConscript</TT >, allowing you to change <SPAN CLASS="application" >SCons</SPAN >'s default behavior. </P ><P > If you get a tool from somewhere (the <SPAN CLASS="application" >SCons</SPAN > wiki or a third party, for instance) and you'd like to use it in your project, the <TT CLASS="filename" >site_scons</TT > dir is the simplest place to put it. Tools come in two flavors; either a Python function that operates on an <CODE CLASS="function" >Environment</CODE > or a Python file containing two functions, exists() and generate(). </P ><P > A single-function Tool can just be included in your <TT CLASS="filename" >site_scons/site_init.py</TT > file where it will be parsed and made available for use. For instance, you could have a <TT CLASS="filename" >site_scons/site_init.py</TT > file like this: </P ><PRE CLASS="programlisting" > def TOOL_ADD_HEADER(env): """A Tool to add a header from $HEADER to the source file""" add_header = Builder(action=['echo "$HEADER" > $TARGET', 'cat $SOURCE >> $TARGET']) env.Append(BUILDERS = {'AddHeader' : add_header}) env['HEADER'] = '' # set default value </PRE ><P > and a <TT CLASS="filename" >SConstruct</TT > like this: </P ><PRE CLASS="programlisting" > # Use TOOL_ADD_HEADER from site_scons/site_init.py env=Environment(tools=['default', TOOL_ADD_HEADER], HEADER="=====") env.AddHeader('tgt', 'src') </PRE ><P > The <CODE CLASS="function" >TOOL_ADD_HEADER</CODE > tool method will be called to add the <CODE CLASS="function" >AddHeader</CODE > tool to the environment. </P ><P > Similarly, a more full-fledged tool with <CODE CLASS="function" >exists()</CODE > and <CODE CLASS="function" >generate()</CODE > methods can be installed in <TT CLASS="filename" >site_scons/site_tools/toolname.py</TT >. Since <TT CLASS="filename" >site_scons/site_tools</TT > is automatically added to the head of the tool search path, any tool found there will be available to all environments. Furthermore, a tool found there will override a built-in tool of the same name, so if you need to change the behavior of a built-in tool, site_scons gives you the hook you need. </P ><P > Many people have a library of utility Python functions they'd like to include in <TT CLASS="filename" >SConscript</TT >s; just put that module in <TT CLASS="filename" >site_scons/my_utils.py</TT > or any valid Python module name of your choice. For instance you can do something like this in <TT CLASS="filename" >site_scons/my_utils.py</TT > to add a build_id method: </P ><PRE CLASS="programlisting" > def build_id(): """Return a build ID (stub version)""" return "100" </PRE ><P > And then in your <TT CLASS="filename" >SConscript</TT > or any sub-<TT CLASS="filename" >SConscript</TT > anywhere in your build, you can import <TT CLASS="filename" >my_utils</TT > and use it: </P ><PRE CLASS="programlisting" > import my_utils print "build_id=" + my_utils.build_id() </PRE ><P > If you have a machine-wide site dir you'd like to use instead of <TT CLASS="filename" >./site_scons</TT >, use the <TT CLASS="literal" >--site-dir</TT > option to point to your dir. <TT CLASS="filename" >site_init.py</TT > and <TT CLASS="filename" >site_tools</TT > will be located under that dir. To avoid using a <TT CLASS="filename" >site_scons</TT > dir at all, even if it exists, use the <TT CLASS="literal" >--no-site-dir</TT > option. </P ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-builders-commands" ></A >Chapter 20. Not Writing a Builder: the <CODE CLASS="function" >Command</CODE > Builder</H1 ><P > Creating a <CODE CLASS="classname" >Builder</CODE > and attaching it to a <TT CLASS="literal" >construction environment</TT > allows for a lot of flexibility when you want to re-use actions to build multiple files of the same type. This can, however, be cumbersome if you only need to execute one specific command to build a single file (or group of files). For these situations, <SPAN CLASS="application" >SCons</SPAN > supports a <CODE CLASS="function" >Command</CODE > <CODE CLASS="classname" >Builder</CODE > that arranges for a specific action to be executed to build a specific file or files. This looks a lot like the other builders (like <A HREF="#b-Program" ><CODE CLASS="function" >Program</CODE ></A >, <A HREF="#b-Object" ><CODE CLASS="function" >Object</CODE ></A >, etc.), but takes as an additional argument the command to be executed to build the file: </P ><PRE CLASS="programlisting" > env = Environment() env.Command('foo.out', 'foo.in', "sed 's/x/y/' < $SOURCE > $TARGET") </PRE ><P > When executed, <SPAN CLASS="application" >SCons</SPAN > runs the specified command, substituting <A HREF="#cv-SOURCE" ><CODE CLASS="envar" >$SOURCE</CODE ></A > and <A HREF="#cv-TARGET" ><CODE CLASS="envar" >$TARGET</CODE ></A > as expected: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > sed 's/x/y/' < foo.in > foo.out </PRE ><P > This is often more convenient than creating a <CODE CLASS="classname" >Builder</CODE > object and adding it to the <A HREF="#cv-BUILDERS" ><CODE CLASS="envar" >$BUILDERS</CODE ></A > variable of a <TT CLASS="literal" >construction environment</TT > </P ><P > Note that the action you specify to the <CODE CLASS="function" >Command</CODE > <CODE CLASS="classname" >Builder</CODE > can be any legal <SPAN CLASS="application" >SCons</SPAN > <CODE CLASS="classname" >Action</CODE >, such as a Python function: </P ><PRE CLASS="programlisting" > env = Environment() def build(target, source, env): # Whatever it takes to build return None env.Command('foo.out', 'foo.in', build) </PRE ><P > Which executes as follows: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > build(["foo.out"], ["foo.in"]) </PRE ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-add-method" ></A >Chapter 21. Pseudo-Builders: the AddMethod function</H1 ><P > The <CODE CLASS="function" >AddMethod</CODE > function is used to add a method to an environment. It's typically used to add a "pseudo-builder," a function that looks like a <CODE CLASS="classname" >Builder</CODE > but wraps up calls to multiple other <CODE CLASS="classname" >Builder</CODE >s or otherwise processes its arguments before calling one or more <CODE CLASS="classname" >Builder</CODE >s. In the following example, we want to install the program into the standard <TT CLASS="filename" >/usr/bin</TT > directory hierarchy, but also copy it into a local <TT CLASS="filename" >install/bin</TT > directory from which a package might be built: </P ><PRE CLASS="programlisting" > def install_in_bin_dirs(env, source): """Install source in both bin dirs""" i1 = env.Install("$BIN", source) i2 = env.Install("$LOCALBIN", source) return [i1[0], i2[0]] # Return a list, like a normal builder env = Environment(BIN='/usr/bin', LOCALBIN='#install/bin') env.AddMethod(install_in_bin_dirs, "InstallInBinDirs") env.InstallInBinDirs(Program('hello.c')) # installs hello in both bin dirs </PRE ><P > This produces the following: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q /</KBD > cc -o hello.o -c hello.c cc -o hello hello.o Install file: "hello" as "/usr/bin/hello" Install file: "hello" as "install/bin/hello" </PRE ><P > As mentioned, a psuedo-builder also provides more flexibility in parsing arguments than you can get with a <CODE CLASS="classname" >Builder</CODE >. The next example shows a pseudo-builder with a named argument that modifies the filename, and a separate argument for the resource file (rather than having the builder figure it out by file extension). This example also demonstrates using the global <CODE CLASS="function" >AddMethod</CODE > function to add a method to the global Environment class, so it will be used in all subsequently created environments. </P ><PRE CLASS="programlisting" > def BuildTestProg(env, testfile, resourcefile, testdir="tests"): """Build the test program; prepends "test_" to src and target, and puts target into testdir.""" srcfile = "test_%s.c" % testfile target = "%s/test_%s" % (testdir, testfile) if env['PLATFORM'] == 'win32': resfile = env.RES(resourcefile) p = env.Program(target, [srcfile, resfile]) else: p = env.Program(target, srcfile) return p AddMethod(Environment, BuildTestProg) env = Environment() env.BuildTestProg('stuff', resourcefile='res.rc') </PRE ><P > This produces the following on Linux: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o test_stuff.o -c test_stuff.c cc -o tests/test_stuff test_stuff.o </PRE ><P > And the following on Windows: </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >scons -Q</KBD > rc /fores.res res.rc cl /nologo /c test_stuff.c /Fotest_stuff.obj link /nologo /OUT:tests\test_stuff.exe test_stuff.obj res.res </PRE ><P > Using <CODE CLASS="function" >AddMethod</CODE > is better than just adding an instance method to a <TT CLASS="literal" >construction environment</TT > because it gets called as a proper method, and because <CODE CLASS="function" >AddMethod</CODE > provides for copying the method to any clones of the <TT CLASS="literal" >construction environment</TT > instance. </P ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-scanners" ></A >Chapter 22. Writing Scanners</H1 ><P > <SPAN CLASS="application" >SCons</SPAN > has built-in scanners that know how to look in C, Fortran and IDL source files for information about other files that targets built from those files depend on--for example, in the case of files that use the C preprocessor, the <TT CLASS="filename" >.h</TT > files that are specified using <TT CLASS="literal" >#include</TT > lines in the source. You can use the same mechanisms that <SPAN CLASS="application" >SCons</SPAN > uses to create its built-in scanners to write scanners of your own for file types that <SPAN CLASS="application" >SCons</SPAN > does not know how to scan "out of the box." </P ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3743" >22.1. A Simple Scanner Example</A ></H2 ><P > Suppose, for example, that we want to create a simple scanner for <TT CLASS="filename" >.foo</TT > files. A <TT CLASS="filename" >.foo</TT > file contains some text that will be processed, and can include other files on lines that begin with <TT CLASS="literal" >include</TT > followed by a file name: </P ><PRE CLASS="programlisting" > include filename.foo </PRE ><P > Scanning a file will be handled by a Python function that you must supply. Here is a function that will use the Python <TT CLASS="filename" >re</TT > module to scan for the <TT CLASS="literal" >include</TT > lines in our example: </P ><PRE CLASS="programlisting" > import re include_re = re.compile(r'^include\s+(\S+)$', re.M) def kfile_scan(node, env, path, arg): contents = node.get_contents() return include_re.findall(contents) </PRE ><P > The scanner function must accept the four specified arguments and return a list of implicit dependencies. Presumably, these would be dependencies found from examining the contents of the file, although the function can perform any manipulation at all to generate the list of dependencies. </P ><P ></P ><DIV CLASS="variablelist" ><DL ><DT >node</DT ><DD ><P > An <SPAN CLASS="application" >SCons</SPAN > node object representing the file being scanned. The path name to the file can be used by converting the node to a string using the <TT CLASS="literal" >str()</TT > function, or an internal <SPAN CLASS="application" >SCons</SPAN > <TT CLASS="literal" >get_contents()</TT > object method can be used to fetch the contents. </P ></DD ><DT >env</DT ><DD ><P > The construction environment in effect for this scan. The scanner function may choose to use construction variables from this environment to affect its behavior. </P ></DD ><DT >path</DT ><DD ><P > A list of directories that form the search path for included files for this scanner. This is how <SPAN CLASS="application" >SCons</SPAN > handles the <A HREF="#cv-CPPPATH" ><CODE CLASS="envar" >$CPPPATH</CODE ></A > and <A HREF="#cv-LIBPATH" ><CODE CLASS="envar" >$LIBPATH</CODE ></A > variables. </P ></DD ><DT >arg</DT ><DD ><P > An optional argument that you can choose to have passed to this scanner function by various scanner instances. </P ></DD ></DL ></DIV ><P > A Scanner object is created using the <CODE CLASS="classname" >Scanner</CODE > function, which typically takes an <TT CLASS="literal" >skeys</TT > argument to associate the type of file suffix with this scanner. The Scanner object must then be associated with the <A HREF="#cv-SCANNERS" ><CODE CLASS="envar" >$SCANNERS</CODE ></A > construction variable of a construction environment, typically by using the <CODE CLASS="function" >Append</CODE > method: </P ><PRE CLASS="programlisting" > kscan = Scanner(function = kfile_scan, skeys = ['.k']) env.Append(SCANNERS = kscan) </PRE ><P > When we put it all together, it looks like: </P ><PRE CLASS="programlisting" > import re include_re = re.compile(r'^include\s+(\S+)$', re.M) def kfile_scan(node, env, path): contents = node.get_contents() includes = include_re.findall(contents) return includes kscan = Scanner(function = kfile_scan, skeys = ['.k']) env = Environment(ENV = {'PATH' : '/usr/local/bin'}) env.Append(SCANNERS = kscan) env.Command('foo', 'foo.k', 'kprocess < $SOURCES > $TARGET') </PRE ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-repositories" ></A >Chapter 23. Building From Code Repositories</H1 ><P > Often, a software project will have one or more central repositories, directory trees that contain source code, or derived files, or both. You can eliminate additional unnecessary rebuilds of files by having <SPAN CLASS="application" >SCons</SPAN > use files from one or more code repositories to build files in your local build tree. </P ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3794" >23.1. The <CODE CLASS="function" >Repository</CODE > Method</A ></H2 ><P > It's often useful to allow multiple programmers working on a project to build software from source files and/or derived files that are stored in a centrally-accessible repository, a directory copy of the source code tree. (Note that this is not the sort of repository maintained by a source code management system like BitKeeper, CVS, or Subversion.) You use the <CODE CLASS="function" >Repository</CODE > method to tell <SPAN CLASS="application" >SCons</SPAN > to search one or more central code repositories (in order) for any source files and derived files that are not present in the local build tree: </P ><PRE CLASS="programlisting" > env = Environment() env.Program('hello.c') Repository('/usr/repository1', '/usr/repository2') </PRE ><P > Multiple calls to the <CODE CLASS="function" >Repository</CODE > method will simply add repositories to the global list that <SPAN CLASS="application" >SCons</SPAN > maintains, with the exception that <SPAN CLASS="application" >SCons</SPAN > will automatically eliminate the current directory and any non-existent directories from the list. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3805" >23.2. Finding source files in repositories</A ></H2 ><P > The above example specifies that <SPAN CLASS="application" >SCons</SPAN > will first search for files under the <TT CLASS="filename" >/usr/repository1</TT > tree and next under the <TT CLASS="filename" >/usr/repository2</TT > tree. <SPAN CLASS="application" >SCons</SPAN > expects that any files it searches for will be found in the same position relative to the top-level directory. In the above example, if the <TT CLASS="filename" >hello.c</TT > file is not found in the local build tree, <SPAN CLASS="application" >SCons</SPAN > will search first for a <TT CLASS="filename" >/usr/repository1/hello.c</TT > file and then for a <TT CLASS="filename" >/usr/repository2/hello.c</TT > file to use in its place. </P ><P > So given the <TT CLASS="filename" >SConstruct</TT > file above, if the <TT CLASS="filename" >hello.c</TT > file exists in the local build directory, <SPAN CLASS="application" >SCons</SPAN > will rebuild the <SPAN CLASS="application" >hello</SPAN > program as normal: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c hello.c cc -o hello hello.o </PRE ><P > If, however, there is no local <TT CLASS="filename" >hello.c</TT > file, but one exists in <TT CLASS="filename" >/usr/repository1</TT >, <SPAN CLASS="application" >SCons</SPAN > will recompile the <SPAN CLASS="application" >hello</SPAN > program from the source file it finds in the repository: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c /usr/repository1/hello.c cc -o hello hello.o </PRE ><P > And similarly, if there is no local <TT CLASS="filename" >hello.c</TT > file and no <TT CLASS="filename" >/usr/repository1/hello.c</TT >, but one exists in <TT CLASS="filename" >/usr/repository2</TT >: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c /usr/repository2/hello.c cc -o hello hello.o </PRE ><P > </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3837" >23.3. Finding <TT CLASS="literal" >#include</TT > files in repositories</A ></H2 ><P > We've already seen that SCons will scan the contents of a source file for <TT CLASS="literal" >#include</TT > file names and realize that targets built from that source file also depend on the <TT CLASS="literal" >#include</TT > file(s). For each directory in the <A HREF="#cv-CPPPATH" ><CODE CLASS="envar" >$CPPPATH</CODE ></A > list, <SPAN CLASS="application" >SCons</SPAN > will actually search the corresponding directories in any repository trees and establish the correct dependencies on any <TT CLASS="literal" >#include</TT > files that it finds in repository directory. </P ><P > Unless the C compiler also knows about these directories in the repository trees, though, it will be unable to find the <TT CLASS="literal" >#include</TT > files. If, for example, the <TT CLASS="filename" >hello.c</TT > file in our previous example includes the <SPAN CLASS="application" >hello</SPAN >.h; in its current directory, and the <SPAN CLASS="application" >hello</SPAN >.h; only exists in the repository: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c hello.c hello.c:1: hello.h: No such file or directory </PRE ><P > In order to inform the C compiler about the repositories, <SPAN CLASS="application" >SCons</SPAN > will add appropriate <TT CLASS="literal" >-I</TT > flags to the compilation commands for each directory in the <CODE CLASS="envar" >$CPPPATH</CODE > list. So if we add the current directory to the construction environment <CODE CLASS="envar" >$CPPPATH</CODE > like so: </P ><PRE CLASS="programlisting" > env = Environment(CPPPATH = ['.']) env.Program('hello.c') Repository('/usr/repository1') </PRE ><P > Then re-executing <SPAN CLASS="application" >SCons</SPAN > yields: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c -I. -I/usr/repository1 hello.c cc -o hello hello.o </PRE ><P > The order of the <TT CLASS="literal" >-I</TT > options replicates, for the C preprocessor, the same repository-directory search path that <SPAN CLASS="application" >SCons</SPAN > uses for its own dependency analysis. If there are multiple repositories and multiple <CODE CLASS="envar" >$CPPPATH</CODE > directories, <SPAN CLASS="application" >SCons</SPAN > will add the repository directories to the beginning of each <CODE CLASS="envar" >$CPPPATH</CODE > directory, rapidly multiplying the number of <TT CLASS="literal" >-I</TT > flags. If, for example, the <CODE CLASS="envar" >$CPPPATH</CODE > contains three directories (and shorter repository path names!): </P ><PRE CLASS="programlisting" > env = Environment(CPPPATH = ['dir1', 'dir2', 'dir3']) env.Program('hello.c') Repository('/r1', '/r2') </PRE ><P > Then we'll end up with nine <TT CLASS="literal" >-I</TT > options on the command line, three (for each of the <CODE CLASS="envar" >$CPPPATH</CODE > directories) times three (for the local directory plus the two repositories): </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c -Idir1 -I/r1/dir1 -I/r2/dir1 -Idir2 -I/r1/dir2 -I/r2/dir2 -Idir3 -I/r1/dir3 -I/r2/dir3 hello.c cc -o hello hello.o </PRE ><DIV CLASS="section" ><HR><H3 CLASS="section" ><A NAME="AEN3878" >23.3.1. Limitations on <TT CLASS="literal" >#include</TT > files in repositories</A ></H3 ><P > <SPAN CLASS="application" >SCons</SPAN > relies on the C compiler's <TT CLASS="literal" >-I</TT > options to control the order in which the preprocessor will search the repository directories for <TT CLASS="literal" >#include</TT > files. This causes a problem, however, with how the C preprocessor handles <TT CLASS="literal" >#include</TT > lines with the file name included in double-quotes. </P ><P > As we've seen, <SPAN CLASS="application" >SCons</SPAN > will compile the <TT CLASS="filename" >hello.c</TT > file from the repository if it doesn't exist in the local directory. If, however, the <TT CLASS="filename" >hello.c</TT > file in the repository contains a <TT CLASS="literal" >#include</TT > line with the file name in double quotes: </P ><PRE CLASS="programlisting" > #include "hello.h" int main(int argc, char *argv[]) { printf(HELLO_MESSAGE); return (0); } </PRE ><P > Then the C preprocessor will <SPAN CLASS="emphasis" ><I CLASS="emphasis" >always</I ></SPAN > use a <TT CLASS="filename" >hello.h</TT > file from the repository directory first, even if there is a <TT CLASS="filename" >hello.h</TT > file in the local directory, despite the fact that the command line specifies <TT CLASS="literal" >-I</TT > as the first option: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c -I. -I/usr/repository1 /usr/repository1/hello.c cc -o hello hello.o </PRE ><P > This behavior of the C preprocessor--always search for a <TT CLASS="literal" >#include</TT > file in double-quotes first in the same directory as the source file, and only then search the <TT CLASS="literal" >-I</TT >--can not, in general, be changed. In other words, it's a limitation that must be lived with if you want to use code repositories in this way. There are three ways you can possibly work around this C preprocessor behavior: </P ><P ></P ><OL TYPE="1" ><LI ><P > Some modern versions of C compilers do have an option to disable or control this behavior. If so, add that option to <A HREF="#cv-CFLAGS" ><CODE CLASS="envar" >$CFLAGS</CODE ></A > (or <A HREF="#cv-CXXFLAGS" ><CODE CLASS="envar" >$CXXFLAGS</CODE ></A > or both) in your construction environment(s). Make sure the option is used for all construction environments that use C preprocessing! </P ></LI ><LI ><P > Change all occurrences of <TT CLASS="literal" >#include "file.h"</TT > to <TT CLASS="literal" >#include <file.h></TT >. Use of <TT CLASS="literal" >#include</TT > with angle brackets does not have the same behavior--the <TT CLASS="literal" >-I</TT > directories are searched first for <TT CLASS="literal" >#include</TT > files--which gives <SPAN CLASS="application" >SCons</SPAN > direct control over the list of directories the C preprocessor will search. </P ></LI ><LI ><P > Require that everyone working with compilation from repositories check out and work on entire directories of files, not individual files. (If you use local wrapper scripts around your source code control system's command, you could add logic to enforce this restriction there. </P ></LI ></OL ></DIV ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3919" >23.4. Finding the <TT CLASS="filename" >SConstruct</TT > file in repositories</A ></H2 ><P > <SPAN CLASS="application" >SCons</SPAN > will also search in repositories for the <TT CLASS="filename" >SConstruct</TT > file and any specified <TT CLASS="filename" >SConscript</TT > files. This poses a problem, though: how can <SPAN CLASS="application" >SCons</SPAN > search a repository tree for an <TT CLASS="filename" >SConstruct</TT > file if the <TT CLASS="filename" >SConstruct</TT > file itself contains the information about the pathname of the repository? To solve this problem, <SPAN CLASS="application" >SCons</SPAN > allows you to specify repository directories on the command line using the <TT CLASS="literal" >-Y</TT > option: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q -Y /usr/repository1 -Y /usr/repository2</KBD > </PRE ><P > When looking for source or derived files, <SPAN CLASS="application" >SCons</SPAN > will first search the repositories specified on the command line, and then search the repositories specified in the <TT CLASS="filename" >SConstruct</TT > or <TT CLASS="filename" >SConscript</TT > files. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3937" >23.5. Finding derived files in repositories</A ></H2 ><P > If a repository contains not only source files, but also derived files (such as object files, libraries, or executables), <SPAN CLASS="application" >SCons</SPAN > will perform its normal MD5 signature calculation to decide if a derived file in a repository is up-to-date, or the derived file must be rebuilt in the local build directory. For the <SPAN CLASS="application" >SCons</SPAN > signature calculation to work correctly, a repository tree must contain the <TT CLASS="filename" >.sconsign</TT > files that <SPAN CLASS="application" >SCons</SPAN > uses to keep track of signature information. </P ><P > Usually, this would be done by a build integrator who would run <SPAN CLASS="application" >SCons</SPAN > in the repository to create all of its derived files and <TT CLASS="filename" >.sconsign</TT > files, or who would run <SPAN CLASS="application" >SCons</SPAN > in a separate build directory and copy the resulting tree to the desired repository: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >cd /usr/repository1</KBD > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o file1.o -c file1.c cc -o file2.o -c file2.c cc -o hello.o -c hello.c cc -o hello hello.o file1.o file2.o </PRE ><P > (Note that this is safe even if the <TT CLASS="filename" >SConstruct</TT > file lists <TT CLASS="filename" >/usr/repository1</TT > as a repository, because <SPAN CLASS="application" >SCons</SPAN > will remove the current build directory from its repository list for that invocation.) </P ><P > Now, with the repository populated, we only need to create the one local source file we're interested in working with at the moment, and use the <TT CLASS="literal" >-Y</TT > option to tell <SPAN CLASS="application" >SCons</SPAN > to fetch any other files it needs from the repository: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >cd $HOME/build</KBD > % <KBD CLASS="userinput" >edit hello.c</KBD > % <KBD CLASS="userinput" >scons -Q -Y /usr/repository1</KBD > cc -c -o hello.o hello.c cc -o hello hello.o /usr/repository1/file1.o /usr/repository1/file2.o </PRE ><P > Notice that <SPAN CLASS="application" >SCons</SPAN > realizes that it does not need to rebuild local copies <TT CLASS="filename" >file1.o</TT > and <TT CLASS="filename" >file2.o</TT > files, but instead uses the already-compiled files from the repository. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN3966" >23.6. Guaranteeing local copies of files</A ></H2 ><P > If the repository tree contains the complete results of a build, and we try to build from the repository without any files in our local tree, something moderately surprising happens: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >mkdir $HOME/build2</KBD > % <KBD CLASS="userinput" >cd $HOME/build2</KBD > % <KBD CLASS="userinput" >scons -Q -Y /usr/all/repository hello</KBD > scons: `hello' is up-to-date. </PRE ><P > Why does <SPAN CLASS="application" >SCons</SPAN > say that the <SPAN CLASS="application" >hello</SPAN > program is up-to-date when there is no <SPAN CLASS="application" >hello</SPAN > program in the local build directory? Because the repository (not the local directory) contains the up-to-date <SPAN CLASS="application" >hello</SPAN > program, and <SPAN CLASS="application" >SCons</SPAN > correctly determines that nothing needs to be done to rebuild that up-to-date copy of the file. </P ><P > There are, however, many times when you want to ensure that a local copy of a file always exists. A packaging or testing script, for example, may assume that certain generated files exist locally. To tell <SPAN CLASS="application" >SCons</SPAN > to make a copy of any up-to-date repository file in the local build directory, use the <CODE CLASS="function" >Local</CODE > function: </P ><PRE CLASS="programlisting" > env = Environment() hello = env.Program('hello.c') Local(hello) </PRE ><P > If we then run the same command, <SPAN CLASS="application" >SCons</SPAN > will make a local copy of the program from the repository copy, and tell you that it is doing so: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Y /usr/all/repository hello</KBD > Local copy of hello from /usr/all/repository/hello scons: `hello' is up-to-date. </PRE ><P > (Notice that, because the act of making the local copy is not considered a "build" of the <SPAN CLASS="application" >hello</SPAN > file, <SPAN CLASS="application" >SCons</SPAN > still reports that it is up-to-date.) </P ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-sconf" ></A >Chapter 24. Multi-Platform Configuration (<SPAN CLASS="application" >Autoconf</SPAN > Functionality)</H1 ><P > <SPAN CLASS="application" >SCons</SPAN > has integrated support for multi-platform build configuration similar to that offered by GNU <SPAN CLASS="application" >Autoconf</SPAN >, such as figuring out what libraries or header files are available on the local system. This section describes how to use this <SPAN CLASS="application" >SCons</SPAN > feature. </P ><DIV CLASS="note" ><P ></P ><TABLE CLASS="note" WIDTH="100%" BORDER="0" ><TR ><TD WIDTH="25" ALIGN="CENTER" VALIGN="TOP" ><IMG SRC="../images/note.gif" HSPACE="5" ALT="Note"></TD ><TD ALIGN="LEFT" VALIGN="TOP" ><P > This chapter is still under development, so not everything is explained as well as it should be. See the <SPAN CLASS="application" >SCons</SPAN > man page for additional information. </P ></TD ></TR ></TABLE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4000" >24.1. <TT CLASS="literal" >Configure Contexts</TT ></A ></H2 ><P > The basic framework for multi-platform build configuration in <SPAN CLASS="application" >SCons</SPAN > is to attach a <TT CLASS="literal" >configure context</TT > to a construction environment by calling the <CODE CLASS="function" >Configure</CODE > function, perform a number of checks for libraries, functions, header files, etc., and to then call the configure context's <CODE CLASS="function" >Finish</CODE > method to finish off the configuration: </P ><PRE CLASS="programlisting" > env = Environment() conf = Configure(env) # Checks for libraries, header files, etc. go here! env = conf.Finish() </PRE ><P > <SPAN CLASS="application" >SCons</SPAN > provides a number of basic checks, as well as a mechanism for adding your own custom checks. </P ><P > Note that <SPAN CLASS="application" >SCons</SPAN > uses its own dependency mechanism to determine when a check needs to be run--that is, <SPAN CLASS="application" >SCons</SPAN > does not run the checks every time it is invoked, but caches the values returned by previous checks and uses the cached values unless something has changed. This saves a tremendous amount of developer time while working on cross-platform build issues. </P ><P > The next sections describe the basic checks that <SPAN CLASS="application" >SCons</SPAN > supports, as well as how to add your own custom checks. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4016" >24.2. Checking for the Existence of Header Files</A ></H2 ><P > Testing the existence of a header file requires knowing what language the header file is. A configure context has a <CODE CLASS="function" >CheckCHeader</CODE > method that checks for the existence of a C header file: </P ><PRE CLASS="programlisting" > env = Environment() conf = Configure(env) if not conf.CheckCHeader('math.h'): print 'Math.h must be installed!' Exit(1) if conf.CheckCHeader('foo.h'): conf.env.Append('-DHAS_FOO_H') env = conf.Finish() </PRE ><P > Note that you can choose to terminate the build if a given header file doesn't exist, or you can modify the construction environment based on the existence of a header file. </P ><P > If you need to check for the existence a C++ header file, use the <CODE CLASS="function" >CheckCXXHeader</CODE > method: </P ><PRE CLASS="programlisting" > env = Environment() conf = Configure(env) if not conf.CheckCXXHeader('vector.h'): print 'vector.h must be installed!' Exit(1) env = conf.Finish() </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4025" >24.3. Checking for the Availability of a Function</A ></H2 ><P > Check for the availability of a specific function using the <CODE CLASS="function" >CheckFunc</CODE > method: </P ><PRE CLASS="programlisting" > env = Environment() conf = Configure(env) if not conf.CheckFunc('strcpy'): print 'Did not find strcpy(), using local version' conf.env.Append('-Dstrcpy=my_local_strcpy') env = conf.Finish() </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4030" >24.4. Checking for the Availability of a Library</A ></H2 ><P > Check for the availability of a library using the <CODE CLASS="function" >CheckLib</CODE > method. You only specify the basename of the library, you don't need to add a <TT CLASS="literal" >lib</TT > prefix or a <TT CLASS="literal" >.a</TT > or <TT CLASS="literal" >.lib</TT > suffix: </P ><PRE CLASS="programlisting" > env = Environment() conf = Configure(env) if not conf.CheckLib('m'): print 'Did not find libm.a or m.lib, exiting!' Exit(1) env = conf.Finish() </PRE ><P > Because the ability to use a library successfully often depends on having access to a header file that describes the library's interface, you can check for a library <SPAN CLASS="emphasis" ><I CLASS="emphasis" >and</I ></SPAN > a header file at the same time by using the <CODE CLASS="function" >CheckLibWithHeader</CODE > method: </P ><PRE CLASS="programlisting" > env = Environment() conf = Configure(env) if not conf.CheckLibWithHeader('m', 'math.h', 'c'): print 'Did not find libm.a or m.lib, exiting!' Exit(1) env = conf.Finish() </PRE ><P > This is essentially shorthand for separate calls to the <CODE CLASS="function" >CheckHeader</CODE > and <CODE CLASS="function" >CheckLib</CODE > functions. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4045" >24.5. Checking for the Availability of a <TT CLASS="literal" >typedef</TT ></A ></H2 ><P > Check for the availability of a <TT CLASS="literal" >typedef</TT > by using the <CODE CLASS="function" >CheckType</CODE > method: </P ><PRE CLASS="programlisting" > env = Environment() conf = Configure(env) if not conf.CheckType('off_t'): print 'Did not find off_t typedef, assuming int' conf.env.Append(CCFLAGS = '-Doff_t=int') env = conf.Finish() </PRE ><P > You can also add a string that will be placed at the beginning of the test file that will be used to check for the <TT CLASS="literal" >typedef</TT >. This provide a way to specify files that must be included to find the <TT CLASS="literal" >typedef</TT >: </P ><PRE CLASS="programlisting" > env = Environment() conf = Configure(env) if not conf.CheckType('off_t', '#include <sys/types.h>\n'): print 'Did not find off_t typedef, assuming int' conf.env.Append(CCFLAGS = '-Doff_t=int') env = conf.Finish() </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4056" >24.6. Adding Your Own Custom Checks</A ></H2 ><P > A custom check is a Python function that checks for a certain condition to exist on the running system, usually using methods that <SPAN CLASS="application" >SCons</SPAN > supplies to take care of the details of checking whether a compilation succeeds, a link succeeds, a program is runnable, etc. A simple custom check for the existence of a specific library might look as follows: </P ><PRE CLASS="programlisting" > mylib_test_source_file = """ #include <mylib.h> int main(int argc, char **argv) { MyLibrary mylib(argc, argv); return 0; } """ def CheckMyLibrary(context): context.Message('Checking for MyLibrary...') result = context.TryLink(mylib_test_source_file, '.c') context.Result(result) return result </PRE ><P > The <CODE CLASS="function" >Message</CODE > and <CODE CLASS="function" >Result</CODE > methods should typically begin and end a custom check to let the user know what's going on: the <CODE CLASS="function" >Message</CODE > call prints the specified message (with no trailing newline) and the <CODE CLASS="function" >Result</CODE > call prints <TT CLASS="literal" >ok</TT > if the check succeeds and <TT CLASS="literal" >failed</TT > if it doesn't. The <CODE CLASS="function" >TryLink</CODE > method actually tests for whether the specified program text will successfully link. </P ><P > (Note that a custom check can modify its check based on any arguments you choose to pass it, or by using or modifying the configure context environment in the <TT CLASS="literal" >context.env</TT > attribute.) </P ><P > This custom check function is then attached to the <TT CLASS="literal" >configure context</TT > by passing a dictionary to the <CODE CLASS="function" >Configure</CODE > call that maps a name of the check to the underlying function: </P ><PRE CLASS="programlisting" > env = Environment() conf = Configure(env, custom_tests = {'CheckMyLibrary' : CheckMyLibrary}) </PRE ><P > You'll typically want to make the check and the function name the same, as we've done here, to avoid potential confusion. </P ><P > We can then put these pieces together and actually call the <TT CLASS="literal" >CheckMyLibrary</TT > check as follows: </P ><PRE CLASS="programlisting" > mylib_test_source_file = """ #include <mylib.h> int main(int argc, char **argv) { MyLibrary mylib(argc, argv); return 0; } """ def CheckMyLibrary(context): context.Message('Checking for MyLibrary... ') result = context.TryLink(mylib_test_source_file, '.c') context.Result(result) return result env = Environment() conf = Configure(env, custom_tests = {'CheckMyLibrary' : CheckMyLibrary}) if not conf.CheckMyLibrary(): print 'MyLibrary is not installed!' Exit(1) env = conf.Finish() # We would then add actual calls like Program() to build # something using the "env" construction environment. </PRE ><P > If MyLibrary is not installed on the system, the output will look like: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons</KBD > scons: Reading SConscript file ... Checking for MyLibrary... failed MyLibrary is not installed! </PRE ><P > If MyLibrary is installed, the output will look like: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons</KBD > scons: Reading SConscript file ... Checking for MyLibrary... failed scons: done reading SConscript scons: Building targets ... . . . </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4085" >24.7. Not Configuring When Cleaning Targets</A ></H2 ><P > Using multi-platform configuration as described in the previous sections will run the configuration commands even when invoking <KBD CLASS="userinput" >scons -c</KBD > to clean targets: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q -c</KBD > Checking for MyLibrary... ok Removed foo.o Removed foo </PRE ><P > Although running the platform checks when removing targets doesn't hurt anything, it's usually unnecessary. You can avoid this by using the <CODE CLASS="function" >GetOption</CODE >(); method to check whether the <CODE CLASS="option" >-c</CODE > (clean) option has been invoked on the command line: </P ><PRE CLASS="programlisting" > env = Environment() if not env.GetOption('clean'): conf = Configure(env, custom_tests = {'CheckMyLibrary' : CheckMyLibrary}) if not conf.CheckMyLibrary(): print 'MyLibrary is not installed!' Exit(1) env = conf.Finish() </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q -c</KBD > Removed foo.o Removed foo </PRE ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-caching" ></A >Chapter 25. Caching Built Files</H1 ><P > On multi-developer software projects, you can sometimes speed up every developer's builds a lot by allowing them to share the derived files that they build. <SPAN CLASS="application" >SCons</SPAN > makes this easy, as well as reliable. </P ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4101" >25.1. Specifying the Shared Cache Directory</A ></H2 ><P > To enable sharing of derived files, use the <CODE CLASS="function" >CacheDir</CODE > function in any <TT CLASS="filename" >SConscript</TT > file: </P ><PRE CLASS="programlisting" > CacheDir('/usr/local/build_cache') </PRE ><P > Note that the directory you specify must already exist and be readable and writable by all developers who will be sharing derived files. It should also be in some central location that all builds will be able to access. In environments where developers are using separate systems (like individual workstations) for builds, this directory would typically be on a shared or NFS-mounted file system. </P ><P > Here's what happens: When a build has a <CODE CLASS="function" >CacheDir</CODE > specified, every time a file is built, it is stored in the shared cache directory along with its MD5 build signature. <A NAME="AEN4110" HREF="#FTN.AEN4110" ><SPAN CLASS="footnote" >[5]</SPAN ></A > On subsequent builds, before an action is invoked to build a file, <SPAN CLASS="application" >SCons</SPAN > will check the shared cache directory to see if a file with the exact same build signature already exists. If so, the derived file will not be built locally, but will be copied into the local build directory from the shared cache directory, like so: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >scons -Q -c</KBD > Removed hello.o Removed hello % <KBD CLASS="userinput" >scons -Q</KBD > Retrieved `hello.o' from cache Retrieved `hello' from cache </PRE ><P > Note that the <CODE CLASS="function" >CacheDir</CODE > feature still calculates MD5 build sigantures for the shared cache file names even if you configure <SPAN CLASS="application" >SCons</SPAN > to use timestamps to decide if files are up to date. (See the <A HREF="#chap-depends" >Chapter 6</A > chapter for information about the <CODE CLASS="function" >Decider</CODE > function.) Consequently, using <CODE CLASS="function" >CacheDir</CODE > may reduce or eliminate any potential performance improvements from using timestamps for up-to-date decisions. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4123" >25.2. Keeping Build Output Consistent</A ></H2 ><P > One potential drawback to using a shared cache is that the output printed by <SPAN CLASS="application" >SCons</SPAN > can be inconsistent from invocation to invocation, because any given file may be rebuilt one time and retrieved from the shared cache the next time. This can make analyzing build output more difficult, especially for automated scripts that expect consistent output each time. </P ><P > If, however, you use the <TT CLASS="literal" >--cache-show</TT > option, <SPAN CLASS="application" >SCons</SPAN > will print the command line that it <SPAN CLASS="emphasis" ><I CLASS="emphasis" >would</I ></SPAN > have executed to build the file, even when it is retrieving the file from the shared cache. This makes the build output consistent every time the build is run: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >scons -Q -c</KBD > Removed hello.o Removed hello % <KBD CLASS="userinput" >scons -Q --cache-show</KBD > cc -o hello.o -c hello.c cc -o hello hello.o </PRE ><P > The trade-off, of course, is that you no longer know whether or not <SPAN CLASS="application" >SCons</SPAN > has retrieved a derived file from cache or has rebuilt it locally. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4137" >25.3. Not Using the Shared Cache for Specific Files</A ></H2 ><P > You may want to disable caching for certain specific files in your configuration. For example, if you only want to put executable files in a central cache, but not the intermediate object files, you can use the <CODE CLASS="function" >NoCache</CODE > function to specify that the object files should not be cached: </P ><PRE CLASS="programlisting" > env = Environment() obj = env.Object('hello.c') env.Program('hello.c') CacheDir('cache') NoCache('hello.o') </PRE ><P > Then when you run <SPAN CLASS="application" >scons</SPAN > after cleaning the built targets, it will recompile the object file locally (since it doesn't exist in the shared cache directory), but still realize that the shared cache directory contains an up-to-date executable program that can be retrieved instead of re-linking: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >scons -Q -c</KBD > Removed hello.o Removed hello % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c hello.c Retrieved `hello' from cache </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4148" >25.4. Disabling the Shared Cache</A ></H2 ><P > Retrieving an already-built file from the shared cache is usually a significant time-savings over rebuilding the file, but how much of a savings (or even whether it saves time at all) can depend a great deal on your system or network configuration. For example, retrieving cached files from a busy server over a busy network might end up being slower than rebuilding the files locally. </P ><P > In these cases, you can specify the <TT CLASS="literal" >--cache-disable</TT > command-line option to tell <SPAN CLASS="application" >SCons</SPAN > to not retrieve already-built files from the shared cache directory: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >scons -Q -c</KBD > Removed hello.o Removed hello % <KBD CLASS="userinput" >scons -Q</KBD > Retrieved `hello.o' from cache Retrieved `hello' from cache % <KBD CLASS="userinput" >scons -Q -c</KBD > Removed hello.o Removed hello % <KBD CLASS="userinput" >scons -Q --cache-disable</KBD > cc -o hello.o -c hello.c cc -o hello hello.o </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4160" >25.5. Populating a Shared Cache With Already-Built Files</A ></H2 ><P > Sometimes, you may have one or more derived files already built in your local build tree that you wish to make available to other people doing builds. For example, you may find it more effective to perform integration builds with the cache disabled (per the previous section) and only populate the shared cache directory with the built files after the integration build has completed successfully. This way, the cache will only get filled up with derived files that are part of a complete, successful build not with files that might be later overwritten while you debug integration problems. </P ><P > In this case, you can use the the <TT CLASS="literal" >--cache-force</TT > option to tell <SPAN CLASS="application" >SCons</SPAN > to put all derived files in the cache, even if the files already exist in your local tree from having been built by a previous invocation: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q --cache-disable</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >scons -Q -c</KBD > Removed hello.o Removed hello % <KBD CLASS="userinput" >scons -Q --cache-disable</KBD > cc -o hello.o -c hello.c cc -o hello hello.o % <KBD CLASS="userinput" >scons -Q --cache-force</KBD > scons: `.' is up to date. % <KBD CLASS="userinput" >scons -Q</KBD > scons: `.' is up to date. </PRE ><P > Notice how the above sample run demonstrates that the <TT CLASS="literal" >--cache-disable</TT > option avoids putting the built <TT CLASS="filename" >hello.o</TT > and <TT CLASS="filename" >hello</TT > files in the cache, but after using the <TT CLASS="literal" >--cache-force</TT > option, the files have been put in the cache for the next invocation to retrieve. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4177" >25.6. Minimizing Cache Contention: the <TT CLASS="literal" >--random</TT > Option</A ></H2 ><P > If you allow multiple builds to update the shared cache directory simultaneously, two builds that occur at the same time can sometimes start "racing" with one another to build the same files in the same order. If, for example, you are linking multiple files into an executable program: </P ><PRE CLASS="programlisting" > Program('prog', ['f1.c', 'f2.c', 'f3.c', 'f4.c', 'f5.c']) </PRE ><P > <SPAN CLASS="application" >SCons</SPAN > will normally build the input object files on which the program depends in their normal, sorted order: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o f1.o -c f1.c cc -o f2.o -c f2.c cc -o f3.o -c f3.c cc -o f4.o -c f4.c cc -o f5.o -c f5.c cc -o prog f1.o f2.o f3.o f4.o f5.o </PRE ><P > But if two such builds take place simultaneously, they may each look in the cache at nearly the same time and both decide that <TT CLASS="filename" >f1.o</TT > must be rebuilt and pushed into the shared cache directory, then both decide that <TT CLASS="filename" >f2.o</TT > must be rebuilt (and pushed into the shared cache directory), then both decide that <TT CLASS="filename" >f3.o</TT > must be rebuilt... This won't cause any actual build problems--both builds will succeed, generate correct output files, and populate the cache--but it does represent wasted effort. </P ><P > To alleviate such contention for the cache, you can use the <TT CLASS="literal" >--random</TT > command-line option to tell <SPAN CLASS="application" >SCons</SPAN > to build dependencies in a random order: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q --random</KBD > cc -o f3.o -c f3.c cc -o f1.o -c f1.c cc -o f5.o -c f5.c cc -o f2.o -c f2.c cc -o f4.o -c f4.c cc -o prog f1.o f2.o f3.o f4.o f5.o </PRE ><P > Multiple builds using the <TT CLASS="literal" >--random</TT > option will usually build their dependencies in different, random orders, which minimizes the chances for a lot of contention for same-named files in the shared cache directory. Multiple simultaneous builds might still race to try to build the same target file on occasion, but long sequences of inefficient contention should be rare. </P ><P > Note, of course, the <TT CLASS="literal" >--random</TT > option will cause the output that <SPAN CLASS="application" >SCons</SPAN > prints to be inconsistent from invocation to invocation, which may be an issue when trying to compare output from different build runs. </P ><P > If you want to make sure dependencies will be built in a random order without having to specify the <TT CLASS="literal" >--random</TT > on very command line, you can use the <CODE CLASS="function" >SetOption</CODE > function to set the <TT CLASS="literal" >random</TT > option within any <TT CLASS="filename" >SConscript</TT > file: </P ><PRE CLASS="programlisting" > Program('prog', ['f1.c', 'f2.c', 'f3.c', 'f4.c', 'f5.c']) SetOption('random', 1) Program('prog', ['f1.c', 'f2.c', 'f3.c', 'f4.c', 'f5.c']) </PRE ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-alias" ></A >Chapter 26. Alias Targets</H1 ><P > We've already seen how you can use the <CODE CLASS="function" >Alias</CODE > function to create a target named <TT CLASS="literal" >install</TT >: </P ><PRE CLASS="programlisting" > env = Environment() hello = env.Program('hello.c') env.Install('/usr/bin', hello) env.Alias('install', '/usr/bin') </PRE ><P > You can then use this alias on the command line to tell <SPAN CLASS="application" >SCons</SPAN > more naturally that you want to install files: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q install</KBD > cc -o hello.o -c hello.c cc -o hello hello.o Install file: "hello" as "/usr/bin/hello" </PRE ><P > Like other <CODE CLASS="classname" >Builder</CODE > methods, though, the <CODE CLASS="function" >Alias</CODE > method returns an object representing the alias being built. You can then use this object as input to anothother <CODE CLASS="classname" >Builder</CODE >. This is especially useful if you use such an object as input to another call to the <CODE CLASS="function" >Alias</CODE > <CODE CLASS="classname" >Builder</CODE >, allowing you to create a hierarchy of nested aliases: </P ><PRE CLASS="programlisting" > env = Environment() p = env.Program('foo.c') l = env.Library('bar.c') env.Install('/usr/bin', p) env.Install('/usr/lib', l) ib = env.Alias('install-bin', '/usr/bin') il = env.Alias('install-lib', '/usr/lib') env.Alias('install', [ib, il]) </PRE ><P > This example defines separate <TT CLASS="literal" >install</TT >, <TT CLASS="literal" >install-bin</TT >, and <TT CLASS="literal" >install-lib</TT > aliases, allowing you finer control over what gets installed: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q install-bin</KBD > cc -o foo.o -c foo.c cc -o foo foo.o Install file: "foo" as "/usr/bin/foo" % <KBD CLASS="userinput" >scons -Q install-lib</KBD > cc -o bar.o -c bar.c ar rc libbar.a bar.o ranlib libbar.a Install file: "libbar.a" as "/usr/lib/libbar.a" % <KBD CLASS="userinput" >scons -Q -c /</KBD > Removed foo.o Removed foo Removed /usr/bin/foo Removed bar.o Removed libbar.a Removed /usr/lib/libbar.a % <KBD CLASS="userinput" >scons -Q install</KBD > cc -o foo.o -c foo.c cc -o foo foo.o Install file: "foo" as "/usr/bin/foo" cc -o bar.o -c bar.c ar rc libbar.a bar.o ranlib libbar.a Install file: "libbar.a" as "/usr/lib/libbar.a" </PRE ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-java" ></A >Chapter 27. Java Builds</H1 ><P > So far, we've been using examples of building C and C++ programs to demonstrate the features of <SPAN CLASS="application" >SCons</SPAN >. <SPAN CLASS="application" >SCons</SPAN > also supports building Java programs, but Java builds are handled slightly differently, which reflects the ways in which the Java compiler and tools build programs differently than other languages' tool chains. </P ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4237" >27.1. Building Java Class Files: the <CODE CLASS="function" >Java</CODE > Builder</A ></H2 ><P > The basic activity when programming in Java, of course, is to take one or more <TT CLASS="filename" >.java</TT > files containing Java source code and to call the Java compiler to turn them into one or more <TT CLASS="filename" >.class</TT > files. In <SPAN CLASS="application" >SCons</SPAN >, you do this by giving the <A HREF="#b-Java" ><CODE CLASS="function" >Java</CODE ></A > Builder a target directory in which to put the <TT CLASS="filename" >.class</TT > files, and a source directory that contains the <TT CLASS="filename" >.java</TT > files: </P ><PRE CLASS="programlisting" > Java('classes', 'src') </PRE ><P > If the <TT CLASS="filename" >src</TT > directory contains three <TT CLASS="filename" >.java</TT > source files, then running <SPAN CLASS="application" >SCons</SPAN > might look like this: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > javac -d classes -sourcepath src src/Example1.java src/Example2.java src/Example3.java </PRE ><P > <SPAN CLASS="application" >SCons</SPAN > will actually search the <TT CLASS="filename" >src</TT > directory tree for all of the <TT CLASS="filename" >.java</TT > files. The Java compiler will then create the necessary class files in the <TT CLASS="filename" >classes</TT > subdirectory, based on the class names found in the <TT CLASS="filename" >.java</TT > files. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4261" >27.2. How <SPAN CLASS="application" >SCons</SPAN > Handles Java Dependencies</A ></H2 ><P > In addition to searching the source directory for <TT CLASS="filename" >.java</TT > files, <SPAN CLASS="application" >SCons</SPAN > actually runs the <TT CLASS="filename" >.java</TT > files through a stripped-down Java parser that figures out what classes are defined. In other words, <SPAN CLASS="application" >SCons</SPAN > knows, without you having to tell it, what <TT CLASS="filename" >.class</TT > files will be produced by the <SPAN CLASS="application" >javac</SPAN > call. So our one-liner example from the preceding section: </P ><PRE CLASS="programlisting" > Java('classes', 'src') </PRE ><P > Will not only tell you reliably that the <TT CLASS="filename" >.class</TT > files in the <TT CLASS="filename" >classes</TT > subdirectory are up-to-date: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > javac -d classes -sourcepath src src/Example1.java src/Example2.java src/Example3.java % <KBD CLASS="userinput" >scons -Q classes</KBD > scons: `classes' is up to date. </PRE ><P > But it will also remove all of the generated <TT CLASS="filename" >.class</TT > files, even for inner classes, without you having to specify them manually. For example, if our <TT CLASS="filename" >Example1.java</TT > and <TT CLASS="filename" >Example3.java</TT > files both define additional classes, and the class defined in <TT CLASS="filename" >Example2.java</TT > has an inner class, running <KBD CLASS="userinput" >scons -c</KBD > will clean up all of those <TT CLASS="filename" >.class</TT > files as well: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > javac -d classes -sourcepath src src/Example1.java src/Example2.java src/Example3.java % <KBD CLASS="userinput" >scons -Q -c classes</KBD > Removed classes/Example1.class Removed classes/AdditionalClass1.class Removed classes/Example2$Inner2.class Removed classes/Example2.class Removed classes/Example3.class Removed classes/AdditionalClass3.class </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4288" >27.3. Building Java Archive (<TT CLASS="filename" >.jar</TT >) Files: the <CODE CLASS="function" >Jar</CODE > Builder</A ></H2 ><P > After building the class files, it's common to collect them into a Java archive (<TT CLASS="filename" >.jar</TT >) file, which you do by calling the <A HREF="#b-Jar" ><CODE CLASS="function" >Jar</CODE ></A > Builder method. If you want to just collect all of the class files within a subdirectory, you can just specify that subdirectory as the <CODE CLASS="function" >Jar</CODE > source: </P ><PRE CLASS="programlisting" > Java(target = 'classes', source = 'src') Jar(target = 'test.jar', source = 'classes') </PRE ><P > <SPAN CLASS="application" >SCons</SPAN > will then pass that directory to the <SPAN CLASS="application" >jar</SPAN > command, which will collect all of the underlying <TT CLASS="filename" >.class</TT > files: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > javac -d classes -sourcepath src src/Example1.java src/Example2.java src/Example3.java jar cf test.jar classes </PRE ><P > If you want to keep all of the <TT CLASS="filename" >.class</TT > files for multiple programs in one location, and only archive some of them in each <TT CLASS="filename" >.jar</TT > file, you can pass the <CODE CLASS="function" >Jar</CODE > builder a list of files as its source. It's extremely simple to create multiple <TT CLASS="filename" >.jar</TT > files this way, using the lists of target class files created by calls to the <A HREF="#b-Java" ><CODE CLASS="function" >Java</CODE ></A > builder as sources to the various <CODE CLASS="function" >Jar</CODE > calls: </P ><PRE CLASS="programlisting" > prog1_class_files = Java(target = 'classes', source = 'prog1') prog2_class_files = Java(target = 'classes', source = 'prog2') Jar(target = 'prog1.jar', source = prog1_class_files) Jar(target = 'prog2.jar', source = prog2_class_files) </PRE ><P > This will then create <TT CLASS="filename" >prog1.jar</TT > and <TT CLASS="filename" >prog2.jar</TT > next to the subdirectories that contain their <TT CLASS="filename" >.java</TT > files: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > javac -d classes -sourcepath prog1 prog1/Example1.java prog1/Example2.java javac -d classes -sourcepath prog2 prog2/Example3.java prog2/Example4.java jar cf prog1.jar -C classes Example1.class -C classes Example2.class jar cf prog2.jar -C classes Example3.class -C classes Example4.class </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4319" >27.4. Building C Header and Stub Files: the <CODE CLASS="function" >JavaH</CODE > Builder</A ></H2 ><P > You can generate C header and source files for implementing native methods, by using the <A HREF="#b-JavaH" ><CODE CLASS="function" >JavaH</CODE ></A > Builder. There are several ways of using the <CODE CLASS="function" >JavaH</CODE > Builder. One typical invocation might look like: </P ><PRE CLASS="programlisting" > classes = Java(target = 'classes', source = 'src/pkg/sub') JavaH(target = 'native', source = classes) </PRE ><P > The source is a list of class files generated by the call to the <A HREF="#b-Java" ><CODE CLASS="function" >Java</CODE ></A > Builder, and the target is the output directory in which we want the C header files placed. The target gets converted into the <CODE CLASS="option" >-d</CODE > when <SPAN CLASS="application" >SCons</SPAN > runs <SPAN CLASS="application" >javah</SPAN >: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > javac -d classes -sourcepath src/pkg/sub src/pkg/sub/Example1.java src/pkg/sub/Example2.java src/pkg/sub/Example3.java javah -d native -classpath classes pkg.sub.Example1 pkg.sub.Example2 pkg.sub.Example3 </PRE ><P > In this case, the call to <SPAN CLASS="application" >javah</SPAN > will generate the header files <TT CLASS="filename" >native/pkg_sub_Example1.h</TT >, <TT CLASS="filename" >native/pkg_sub_Example2.h</TT > and <TT CLASS="filename" >native/pkg_sub_Example3.h</TT >. Notice that <SPAN CLASS="application" >SCons</SPAN > remembered that the class files were generated with a target directory of <TT CLASS="filename" >classes</TT >, and that it then specified that target directory as the <CODE CLASS="option" >-classpath</CODE > option to the call to <SPAN CLASS="application" >javah</SPAN >. </P ><P > Although it's more convenient to use the list of class files returned by the <CODE CLASS="function" >Java</CODE > Builder as the source of a call to the <CODE CLASS="function" >JavaH</CODE > Builder, you <SPAN CLASS="emphasis" ><I CLASS="emphasis" >can</I ></SPAN > specify the list of class files by hand, if you prefer. If you do, you need to set the <A HREF="#cv-JAVACLASSDIR" ><CODE CLASS="envar" >$JAVACLASSDIR</CODE ></A > construction variable when calling <CODE CLASS="function" >JavaH</CODE >: </P ><PRE CLASS="programlisting" > Java(target = 'classes', source = 'src/pkg/sub') class_file_list = ['classes/pkg/sub/Example1.class', 'classes/pkg/sub/Example2.class', 'classes/pkg/sub/Example3.class'] JavaH(target = 'native', source = class_file_list, JAVACLASSDIR = 'classes') </PRE ><P > The <CODE CLASS="envar" >$JAVACLASSDIR</CODE > value then gets converted into the <CODE CLASS="option" >-classpath</CODE > when <SPAN CLASS="application" >SCons</SPAN > runs <SPAN CLASS="application" >javah</SPAN >: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > javac -d classes -sourcepath src/pkg/sub src/pkg/sub/Example1.java src/pkg/sub/Example2.java src/pkg/sub/Example3.java javah -d native -classpath classes pkg.sub.Example1 pkg.sub.Example2 pkg.sub.Example3 </PRE ><P > Lastly, if you don't want a separate header file generated for each source file, you can specify an explicit File Node as the target of the <CODE CLASS="function" >JavaH</CODE > Builder: </P ><PRE CLASS="programlisting" > classes = Java(target = 'classes', source = 'src/pkg/sub') JavaH(target = File('native.h'), source = classes) </PRE ><P > Because <SPAN CLASS="application" >SCons</SPAN > assumes by default that the target of the <CODE CLASS="function" >JavaH</CODE > builder is a directory, you need to use the <CODE CLASS="function" >File</CODE > function to make sure that <SPAN CLASS="application" >SCons</SPAN > doesn't create a directory named <TT CLASS="filename" >native.h</TT >. When a file is used, though, <SPAN CLASS="application" >SCons</SPAN > correctly converts the file name into the <SPAN CLASS="application" >javah</SPAN > <CODE CLASS="option" >-o</CODE > option: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > javac -d classes -sourcepath src/pkg/sub src/pkg/sub/Example1.java src/pkg/sub/Example2.java src/pkg/sub/Example3.java javah -o native.h -classpath classes pkg.sub.Example1 pkg.sub.Example2 pkg.sub.Example3 </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4373" >27.5. Building RMI Stub and Skeleton Class Files: the <CODE CLASS="function" >RMIC</CODE > Builder</A ></H2 ><P > You can generate Remote Method Invocation stubs by using the <A HREF="#b-RMIC" ><CODE CLASS="function" >RMIC</CODE ></A > Builder. The source is a list of directories, typically returned by a call to the <A HREF="#b-Java" ><CODE CLASS="function" >Java</CODE ></A > Builder, and the target is an output directory where the <TT CLASS="filename" >_Stub.class</TT > and <TT CLASS="filename" >_Skel.class</TT > files will be placed: </P ><PRE CLASS="programlisting" > classes = Java(target = 'classes', source = 'src/pkg/sub') RMIC(target = 'outdir', source = classes) </PRE ><P > As it did with the <A HREF="#b-JavaH" ><CODE CLASS="function" >JavaH</CODE ></A > Builder, <SPAN CLASS="application" >SCons</SPAN > remembers the class directory and passes it as the <CODE CLASS="option" >-classpath</CODE > option to <SPAN CLASS="application" >rmic</SPAN >: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > javac -d classes -sourcepath src/pkg/sub src/pkg/sub/Example1.java src/pkg/sub/Example2.java rmic -d outdir -classpath classes pkg.sub.Example1 pkg.sub.Example2 </PRE ><P > This example would generate the files <TT CLASS="filename" >outdir/pkg/sub/Example1_Skel.class</TT >, <TT CLASS="filename" >outdir/pkg/sub/Example1_Stub.class</TT >, <TT CLASS="filename" >outdir/pkg/sub/Example2_Skel.class</TT > and <TT CLASS="filename" >outdir/pkg/sub/Example2_Stub.class</TT >. </P ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-misc" ></A >Chapter 28. Miscellaneous Functionality</H1 ><P > <SPAN CLASS="application" >SCons</SPAN > supports a lot of additional functionality that doesn't readily fit into the other chapters. </P ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4401" >28.1. Verifying the Python Version: the <CODE CLASS="function" >EnsurePythonVersion</CODE > Function</A ></H2 ><P > Although the <SPAN CLASS="application" >SCons</SPAN > code itself will run on any Python version 1.5.2 or later, you are perfectly free to make use of Python syntax and modules from more modern versions (for example, Python 2.4 or 2.5) when writing your <TT CLASS="filename" >SConscript</TT > files or your own local modules. If you do this, it's usually helpful to configure <SPAN CLASS="application" >SCons</SPAN > to exit gracefully with an error message if it's being run with a version of Python that simply won't work with your code. This is especially true if you're going to use <SPAN CLASS="application" >SCons</SPAN > to build source code that you plan to distribute publicly, where you can't be sure of the Python version that an anonymous remote user might use to try to build your software. </P ><P > <SPAN CLASS="application" >SCons</SPAN > provides an <CODE CLASS="function" >EnsurePythonVersion</CODE > function for this. You simply pass it the major and minor versions numbers of the version of Python you require: </P ><PRE CLASS="programlisting" > EnsurePythonVersion(2, 5) </PRE ><P > And then <SPAN CLASS="application" >SCons</SPAN > will exit with the following error message when a user runs it with an unsupported earlier version of Python: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > Python 2.5 or greater required, but you have Python 2.3.6 </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4417" >28.2. Verifying the SCons Version: the <CODE CLASS="function" >EnsureSConsVersion</CODE > Function</A ></H2 ><P > You may, of course, write your <TT CLASS="filename" >SConscript</TT > files to use features that were only added in recent versions of <SPAN CLASS="application" >SCons</SPAN >. When you publicly distribute software that is built using <SPAN CLASS="application" >SCons</SPAN >, it's helpful to have <SPAN CLASS="application" >SCons</SPAN > verify the version being used and exit gracefully with an error message if the user's version of <SPAN CLASS="application" >SCons</SPAN > won't work with your <TT CLASS="filename" >SConscript</TT > files. <SPAN CLASS="application" >SCons</SPAN > provides an <CODE CLASS="function" >EnsureSConsVersion</CODE > function that verifies the version of <SPAN CLASS="application" >SCons</SPAN > in the same the <CODE CLASS="function" >EnsurePythonVersion</CODE > function verifies the version of Python, by passing in the major and minor versions numbers of the version of SCons you require: </P ><PRE CLASS="programlisting" > EnsureSConsVersion(1, 0) </PRE ><P > And then <SPAN CLASS="application" >SCons</SPAN > will exit with the following error message when a user runs it with an unsupported earlier version of <SPAN CLASS="application" >SCons</SPAN >: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > SCons 1.0 or greater required, but you have SCons 0.98.5 </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4437" >28.3. Explicitly Terminating <SPAN CLASS="application" >SCons</SPAN > While Reading <TT CLASS="filename" >SConscript</TT > Files: the <CODE CLASS="function" >Exit</CODE > Function</A ></H2 ><P > <SPAN CLASS="application" >SCons</SPAN > supports an <CODE CLASS="function" >Exit</CODE > function which can be used to terminate <SPAN CLASS="application" >SCons</SPAN > while reading the <TT CLASS="filename" >SConscript</TT > files, usually because you've detected a condition under which it doesn't make sense to proceed: </P ><PRE CLASS="programlisting" > if ARGUMENTS.get('FUTURE'): print "The FUTURE option is not supported yet!" Exit(2) env = Environment() env.Program('hello.c') </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q FUTURE=1</KBD > The FUTURE option is not supported yet! % <KBD CLASS="userinput" >scons -Q</KBD > cc -o hello.o -c hello.c cc -o hello hello.o </PRE ><P > The <CODE CLASS="function" >Exit</CODE > function takes as an argument the (numeric) exit status that you want <SPAN CLASS="application" >SCons</SPAN > to exit with. If you don't specify a value, the default is to exit with <TT CLASS="literal" >0</TT >, which indicates successful execution. </P ><P > Note that the <CODE CLASS="function" >Exit</CODE > function is equivalent to calling the Python <CODE CLASS="function" >sys.exit</CODE > function (which the it actually calls), but because <CODE CLASS="function" >Exit</CODE > is a <SPAN CLASS="application" >SCons</SPAN > function, you don't have to import the Python <TT CLASS="literal" >sys</TT > module to use it. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4461" >28.4. Searching for Files: the <CODE CLASS="function" >FindFile</CODE > Function</A ></H2 ><P > The <CODE CLASS="function" >FindFile</CODE > function searches for a file in a list of directories. If there is only one directory, it can be given as a simple string. The function returns a File node if a matching file exists, or None if no file is found. (See the documentation for the <CODE CLASS="function" >Glob</CODE > function for an alternative way of searching for entries in a directory.) </P ><PRE CLASS="programlisting" > # one directory print FindFile('missing', '.') t = FindFile('exists', '.') print t.__class__, t </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > None SCons.Node.FS.File exists scons: `.' is up to date. </PRE ><PRE CLASS="programlisting" > # several directories includes = [ '.', 'include', 'src/include'] headers = [ 'nonesuch.h', 'config.h', 'private.h', 'dist.h'] for hdr in headers: print '%-12s' % ('%s:' % hdr), FindFile(hdr, includes) </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > nonesuch.h: None config.h: config.h private.h: src/include/private.h dist.h: include/dist.h scons: `.' is up to date. </PRE ><P > If the file exists in more than one directory, only the first occurrence is returned. </P ><PRE CLASS="programlisting" > print FindFile('multiple', ['sub1', 'sub2', 'sub3']) print FindFile('multiple', ['sub2', 'sub3', 'sub1']) print FindFile('multiple', ['sub3', 'sub1', 'sub2']) </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > sub1/multiple sub2/multiple sub3/multiple scons: `.' is up to date. </PRE ><P > In addition to existing files, <CODE CLASS="function" >FindFile</CODE > will also find derived files (that is, non-leaf files) that haven't been built yet. (Leaf files should already exist, or the build will fail!) </P ><PRE CLASS="programlisting" > # Neither file exists, so build will fail Command('derived', 'leaf', 'cat >$TARGET $SOURCE') print FindFile('leaf', '.') print FindFile('derived', '.') </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > None derived scons: *** Source `leaf' not found, needed by target `derived'. Stop. </PRE ><PRE CLASS="programlisting" > # Neither file exists, so build will fail Command('derived', 'leaf', 'cat >$TARGET $SOURCE') print FindFile('leaf', '.') print FindFile('derived', '.') # Only 'leaf' exists Command('derived', 'leaf', 'cat >$TARGET $SOURCE') print FindFile('leaf', '.') print FindFile('derived', '.') </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > leaf derived cat > derived leaf </PRE ><P > If a source file exists, <CODE CLASS="function" >FindFile</CODE > will correctly return the name in the build directory. </P ><PRE CLASS="programlisting" > # Only 'src/leaf' exists VariantDir('build', 'src') print FindFile('leaf', 'build') </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > build/leaf scons: `.' is up to date. </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4490" >28.5. Handling Nested Lists: the <CODE CLASS="function" >Flatten</CODE > Function</A ></H2 ><P > <SPAN CLASS="application" >SCons</SPAN > supports a <CODE CLASS="function" >Flatten</CODE > function which takes an input Python sequence (list or tuple) and returns a flattened list containing just the individual elements of the sequence. This can be handy when trying to examine a list composed of the lists returned by calls to various Builders. For example, you might collect object files built in different ways into one call to the <CODE CLASS="function" >Program</CODE > Builder by just enclosing them in a list, as follows: </P ><PRE CLASS="programlisting" > objects = [ Object('prog1.c'), Object('prog2.c', CCFLAGS='-DFOO'), ] Program(objects) </PRE ><P > Because the Builder calls in <SPAN CLASS="application" >SCons</SPAN > flatten their input lists, this works just fine to build the program: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o prog1.o -c prog1.c cc -o prog2.o -c -DFOO prog2.c cc -o prog1 prog1.o prog2.o </PRE ><P > But if you were debugging your build and wanted to print the absolute path of each object file in the <CODE CLASS="varname" >objects</CODE > list, you might try the following simple approach, trying to print each Node's <TT CLASS="literal" >abspath</TT > attribute: </P ><PRE CLASS="programlisting" > objects = [ Object('prog1.c'), Object('prog2.c', CCFLAGS='-DFOO'), ] Program(objects) for object_file in objects: print object_file.abspath </PRE ><P > This does not work as expected because each call to <CODE CLASS="function" >str</CODE > is operating an embedded list returned by each <CODE CLASS="function" >Object</CODE > call, not on the underlying Nodes within those lists: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > AttributeError: NodeList instance has no attribute 'abspath': File "/home/my/project/SConstruct", line 8: print object_file.abspath </PRE ><P > The solution is to use the <CODE CLASS="function" >Flatten</CODE > function so that you can pass each Node to the <CODE CLASS="function" >str</CODE > separately: </P ><PRE CLASS="programlisting" > objects = [ Object('prog1.c'), Object('prog2.c', CCFLAGS='-DFOO'), ] Program(objects) for object_file in Flatten(objects): print object_file.abspath </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > /home/me/project/prog1.o /home/me/project/prog2.o cc -o prog1.o -c prog1.c cc -o prog2.o -c -DFOO prog2.c cc -o prog1 prog1.o prog2.o </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4517" >28.6. Finding the Invocation Directory: the <CODE CLASS="function" >GetLaunchDir</CODE > Function</A ></H2 ><P > If you need to find the directory from which the user invoked the <SPAN CLASS="application" >scons</SPAN > command, you can use the <CODE CLASS="function" >GetLaunchDir</CODE > function: </P ><PRE CLASS="programlisting" > env = Environment( LAUNCHDIR = GetLaunchDir(), ) env.Command('directory_build_info', '$LAUNCHDIR/build_info' Copy('$TARGET', '$SOURCE')) </PRE ><P > Because <SPAN CLASS="application" >SCons</SPAN > is usually invoked from the top-level directory in which the <TT CLASS="filename" >SConstruct</TT > file lives, the Python <CODE CLASS="function" >os.getcwd()</CODE > is often equivalent. However, the <SPAN CLASS="application" >SCons</SPAN > <TT CLASS="literal" >-u</TT >, <TT CLASS="literal" >-U</TT > and <TT CLASS="literal" >-D</TT > command-line options, when invoked from a subdirectory, will cause <SPAN CLASS="application" >SCons</SPAN > to change to the directory in which the <TT CLASS="filename" >SConstruct</TT > file is found. When those options are used, <CODE CLASS="function" >GetLaunchDir</CODE > will still return the path to the user's invoking subdirectory, allowing the <TT CLASS="filename" >SConscript</TT > configuration to still get at configuration (or other) files from the originating directory. </P ></DIV ></DIV ><DIV CLASS="chapter" ><HR><H1 ><A NAME="chap-troubleshooting" ></A >Chapter 29. Troubleshooting</H1 ><P > The experience of configuring any software build tool to build a large code base usually, at some point, involves trying to figure out why the tool is behaving a certain way, and how to get it to behave the way you want. <SPAN CLASS="application" >SCons</SPAN > is no different. This appendix contains a number of different ways in which you can get some additional insight into <SPAN CLASS="application" >SCons</SPAN >' behavior. </P ><P > Note that we're always interested in trying to improve how you can troubleshoot configuration problems. If you run into a problem that has you scratching your head, and which there just doesn't seem to be a good way to debug, odds are pretty good that someone else will run into the same problem, too. If so, please let the SCons development team know (preferably by filing a bug report or feature request at our project pages at tigris.org) so that we can use your feedback to try to come up with a better way to help you, and others, get the necessary insight into <SPAN CLASS="application" >SCons</SPAN > behavior to help identify and fix configuration issues. </P ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4543" >29.1. Why is That Target Being Rebuilt? the <TT CLASS="literal" >--debug=explain</TT > Option</A ></H2 ><P > Let's look at a simple example of a misconfigured build that causes a target to be rebuilt every time <SPAN CLASS="application" >SCons</SPAN > is run: </P ><PRE CLASS="programlisting" > # Intentionally misspell the output file name in the # command used to create the file: Command('file.out', 'file.in', 'cp $SOURCE file.oout') </PRE ><P > (Note to Windows users: The POSIX <SPAN CLASS="application" >cp</SPAN > command copies the first file named on the command line to the second file. In our example, it copies the <TT CLASS="filename" >file.in</TT > file to the <TT CLASS="filename" >file.out</TT > file.) </P ><P > Now if we run <SPAN CLASS="application" >SCons</SPAN > multiple times on this example, we see that it re-runs the <SPAN CLASS="application" >cp</SPAN > command every time: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cp file.in file.oout % <KBD CLASS="userinput" >scons -Q</KBD > cp file.in file.oout % <KBD CLASS="userinput" >scons -Q</KBD > cp file.in file.oout </PRE ><P > In this example, the underlying cause is obvious: we've intentionally misspelled the output file name in the <SPAN CLASS="application" >cp</SPAN > command, so the command doesn't actually build the <TT CLASS="filename" >file.out</TT > file that we've told <SPAN CLASS="application" >SCons</SPAN > to expect. But if the problem weren't obvious, it would be helpful to specify the <TT CLASS="literal" >--debug=explain</TT > option on the command line to have <SPAN CLASS="application" >SCons</SPAN > tell us very specifically why it's decided to rebuild the target: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q --debug=explain</KBD > scons: building `file.out' because it doesn't exist cp file.in file.oout </PRE ><P > If this had been a more complicated example involving a lot of build output, having <SPAN CLASS="application" >SCons</SPAN > tell us that it's trying to rebuild the target file because it doesn't exist would be an important clue that something was wrong with the command that we invoked to build it. </P ><P > The <TT CLASS="literal" >--debug=explain</TT > option also comes in handy to help figure out what input file changed. Given a simple configuration that builds a program from three source files, changing one of the source files and rebuilding with the <TT CLASS="literal" >--debug=explain</TT > option shows very specifically why <SPAN CLASS="application" >SCons</SPAN > rebuilds the files that it does: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o file1.o -c file1.c cc -o file2.o -c file2.c cc -o file3.o -c file3.c cc -o prog file1.o file2.o file3.o % <KBD CLASS="userinput" >edit file2.c</KBD > [CHANGE THE CONTENTS OF file2.c] % <KBD CLASS="userinput" >scons -Q --debug=explain</KBD > scons: rebuilding `file2.o' because `file2.c' changed cc -o file2.o -c file2.c scons: rebuilding `prog' because `file2.o' changed cc -o prog file1.o file2.o file3.o </PRE ><P > This becomes even more helpful in identifying when a file is rebuilt due to a change in an implicit dependency, such as an incuded <TT CLASS="filename" >.h</TT > file. If the <TT CLASS="filename" >file1.c</TT > and <TT CLASS="filename" >file3.c</TT > files in our example both included a <TT CLASS="filename" >hello.h</TT > file, then changing that included file and re-running <SPAN CLASS="application" >SCons</SPAN > with the <TT CLASS="literal" >--debug=explain</TT > option will pinpoint that it's the change to the included file that starts the chain of rebuilds: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > cc -o file1.o -c -I. file1.c cc -o file2.o -c -I. file2.c cc -o file3.o -c -I. file3.c cc -o prog file1.o file2.o file3.o % <KBD CLASS="userinput" >edit hello.h</KBD > [CHANGE THE CONTENTS OF hello.h] % <KBD CLASS="userinput" >scons -Q --debug=explain</KBD > scons: rebuilding `file1.o' because `hello.h' changed cc -o file1.o -c -I. file1.c scons: rebuilding `file3.o' because `hello.h' changed cc -o file3.o -c -I. file3.c scons: rebuilding `prog' because: `file1.o' changed `file3.o' changed cc -o prog file1.o file2.o file3.o </PRE ><P > (Note that the <TT CLASS="literal" >--debug=explain</TT > option will only tell you why <SPAN CLASS="application" >SCons</SPAN > decided to rebuild necessary targets. It does not tell you what files it examined when deciding <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > to rebuild a target file, which is often a more valuable question to answer.) </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4593" >29.2. What's in That Construction Environment? the <CODE CLASS="function" >Dump</CODE > Method</A ></H2 ><P > When you create a construction environment, <SPAN CLASS="application" >SCons</SPAN > populates it with construction variables that are set up for various compilers, linkers and utilities that it finds on your system. Although this is usually helpful and what you want, it might be frustrating if <SPAN CLASS="application" >SCons</SPAN > doesn't set certain variables that you expect to be set. In situations like this, it's sometimes helpful to use the construction environment <CODE CLASS="function" >Dump</CODE > method to print all or some of the construction variables. Note that the <CODE CLASS="function" >Dump</CODE > method <SPAN CLASS="emphasis" ><I CLASS="emphasis" >returns</I ></SPAN > the representation of the variables in the environment for you to print (or otherwise manipulate): </P ><PRE CLASS="programlisting" > env = Environment() print env.Dump() </PRE ><P > On a POSIX system with gcc installed, this might generate: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons</KBD > scons: Reading SConscript files ... { 'BUILDERS': {'_InternalInstall': <function InstallBuilderWrapper at 0x700000>, '_InternalInstallAs': <function InstallAsBuilderWrapper at 0x700000>}, 'CONFIGUREDIR': '#/.sconf_temp', 'CONFIGURELOG': '#/config.log', 'CPPSUFFIXES': [ '.c', '.C', '.cxx', '.cpp', '.c++', '.cc', '.h', '.H', '.hxx', '.hpp', '.hh', '.F', '.fpp', '.FPP', '.m', '.mm', '.S', '.spp', '.SPP'], 'DSUFFIXES': ['.d'], 'Dir': <SCons.Defaults.Variable_Method_Caller instance at 0x700000>, 'Dirs': <SCons.Defaults.Variable_Method_Caller instance at 0x700000>, 'ENV': {'PATH': '/usr/local/bin:/opt/bin:/bin:/usr/bin'}, 'ESCAPE': <function escape at 0x700000>, 'File': <SCons.Defaults.Variable_Method_Caller instance at 0x700000>, 'IDLSUFFIXES': ['.idl', '.IDL'], 'INSTALL': <function copyFunc at 0x700000>, 'LATEXSUFFIXES': ['.tex', '.ltx', '.latex'], 'LIBPREFIX': 'lib', 'LIBPREFIXES': ['$LIBPREFIX'], 'LIBSUFFIX': '.a', 'LIBSUFFIXES': ['$LIBSUFFIX', '$SHLIBSUFFIX'], 'MAXLINELENGTH': 128072, 'OBJPREFIX': '', 'OBJSUFFIX': '.o', 'PLATFORM': 'posix', 'PROGPREFIX': '', 'PROGSUFFIX': '', 'PSPAWN': <function piped_env_spawn at 0x700000>, 'RDirs': <SCons.Defaults.Variable_Method_Caller instance at 0x700000>, 'SCANNERS': [], 'SHELL': 'sh', 'SHLIBPREFIX': '$LIBPREFIX', 'SHLIBSUFFIX': '.so', 'SHOBJPREFIX': '$OBJPREFIX', 'SHOBJSUFFIX': '$OBJSUFFIX', 'SPAWN': <function spawnvpe_spawn at 0x700000>, 'TEMPFILE': <class SCons.Platform.TempFileMunge at 0x700000>, 'TEMPFILEPREFIX': '@', 'TOOLS': ['install', 'install'], '_CPPDEFFLAGS': '${_defines(CPPDEFPREFIX, CPPDEFINES, CPPDEFSUFFIX, __env__)}', '_CPPINCFLAGS': '$( ${_concat(INCPREFIX, CPPPATH, INCSUFFIX, __env__, RDirs, TARGET, SOURCE)} $)', '_LIBDIRFLAGS': '$( ${_concat(LIBDIRPREFIX, LIBPATH, LIBDIRSUFFIX, __env__, RDirs, TARGET, SOURCE)} $)', '_LIBFLAGS': '${_concat(LIBLINKPREFIX, LIBS, LIBLINKSUFFIX, __env__)}', '__RPATH': '$_RPATH', '_concat': <function _concat at 0x700000>, '_defines': <function _defines at 0x700000>, '_stripixes': <function _stripixes at 0x700000>} scons: done reading SConscript files. scons: Building targets ... scons: `.' is up to date. scons: done building targets. </PRE ><P > On a Windows system with Visual C++ the output might look like: </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >scons</KBD > scons: Reading SConscript files ... { 'BUILDERS': {'_InternalInstall': <function InstallBuilderWrapper at 0x700000>, 'Object': <SCons.Builder.CompositeBuilder instance at 0x700000>, 'PCH': <SCons.Builder.BuilderBase instance at 0x700000>, 'RES': <SCons.Builder.BuilderBase instance at 0x700000>, 'SharedObject': <SCons.Builder.CompositeBuilder instance at 0x700000>, 'StaticObject': <SCons.Builder.CompositeBuilder instance at 0x700000>, '_InternalInstallAs': <function InstallAsBuilderWrapper at 0x700000>}, 'CC': 'cl', 'CCCOM': <SCons.Action.FunctionAction instance at 0x700000>, 'CCCOMFLAGS': '$CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS /c $SOURCES /Fo$TARGET $CCPCHFLAGS $CCPDBFLAGS', 'CCFLAGS': ['/nologo'], 'CCPCHFLAGS': ['${(PCH and "/Yu%s /Fp%s"%(PCHSTOP or "",File(PCH))) or ""}'], 'CCPDBFLAGS': ['${(PDB and "/Z7") or ""}'], 'CFILESUFFIX': '.c', 'CFLAGS': [], 'CONFIGUREDIR': '#/.sconf_temp', 'CONFIGURELOG': '#/config.log', 'CPPDEFPREFIX': '/D', 'CPPDEFSUFFIX': '', 'CPPSUFFIXES': [ '.c', '.C', '.cxx', '.cpp', '.c++', '.cc', '.h', '.H', '.hxx', '.hpp', '.hh', '.F', '.fpp', '.FPP', '.m', '.mm', '.S', '.spp', '.SPP'], 'CXX': '$CC', 'CXXCOM': '$CXX $CXXFLAGS $CCCOMFLAGS', 'CXXFILESUFFIX': '.cc', 'CXXFLAGS': ['$CCFLAGS', '$(', '/TP', '$)'], 'DSUFFIXES': ['.d'], 'Dir': <SCons.Defaults.Variable_Method_Caller instance at 0x700000>, 'Dirs': <SCons.Defaults.Variable_Method_Caller instance at 0x700000>, 'ENV': { 'INCLUDE': 'C:\\Program Files\\Microsoft Visual Studio/VC98\\include', 'LIB': 'C:\\Program Files\\Microsoft Visual Studio/VC98\\lib', 'PATH': 'C:\\Program Files\\Microsoft Visual Studio\\Common\\tools\\WIN95;C:\\Program Files\\Microsoft Visual Studio\\Common\\MSDev98\\bin;C:\\Program Files\\Microsoft Visual Studio\\Common\\tools;C:\\Program Files\\Microsoft Visual Studio/VC98\\bin', 'PATHEXT': '.COM;.EXE;.BAT;.CMD', 'SystemRoot': 'C:/WINDOWS'}, 'ESCAPE': <function escape at 0x700000>, 'File': <SCons.Defaults.Variable_Method_Caller instance at 0x700000>, 'IDLSUFFIXES': ['.idl', '.IDL'], 'INCPREFIX': '/I', 'INCSUFFIX': '', 'INSTALL': <function copyFunc at 0x700000>, 'LATEXSUFFIXES': ['.tex', '.ltx', '.latex'], 'LIBPREFIX': '', 'LIBPREFIXES': ['$LIBPREFIX'], 'LIBSUFFIX': '.lib', 'LIBSUFFIXES': ['$LIBSUFFIX'], 'MAXLINELENGTH': 2048, 'MSVS': {'VERSION': '6.0', 'VERSIONS': ['6.0']}, 'MSVS_VERSION': '6.0', 'OBJPREFIX': '', 'OBJSUFFIX': '.obj', 'PCHCOM': '$CXX $CXXFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS /c $SOURCES /Fo${TARGETS[1]} /Yc$PCHSTOP /Fp${TARGETS[0]} $CCPDBFLAGS $PCHPDBFLAGS', 'PCHPDBFLAGS': ['${(PDB and "/Yd") or ""}'], 'PLATFORM': 'win32', 'PROGPREFIX': '', 'PROGSUFFIX': '.exe', 'PSPAWN': <function piped_spawn at 0x700000>, 'RC': 'rc', 'RCCOM': <SCons.Action.FunctionAction instance at 0x700000>, 'RCFLAGS': [], 'RDirs': <SCons.Defaults.Variable_Method_Caller instance at 0x700000>, 'SCANNERS': [], 'SHCC': '$CC', 'SHCCCOM': <SCons.Action.FunctionAction instance at 0x700000>, 'SHCCFLAGS': ['$CCFLAGS'], 'SHCFLAGS': ['$CFLAGS'], 'SHCXX': '$CXX', 'SHCXXCOM': '$SHCXX $SHCXXFLAGS $CCCOMFLAGS', 'SHCXXFLAGS': ['$CXXFLAGS'], 'SHELL': None, 'SHLIBPREFIX': '', 'SHLIBSUFFIX': '.dll', 'SHOBJPREFIX': '$OBJPREFIX', 'SHOBJSUFFIX': '$OBJSUFFIX', 'SPAWN': <function spawn at 0x700000>, 'STATIC_AND_SHARED_OBJECTS_ARE_THE_SAME': 1, 'TEMPFILE': <class SCons.Platform.TempFileMunge at 0x700000>, 'TEMPFILEPREFIX': '@', 'TOOLS': ['msvc', 'install', 'install'], '_CPPDEFFLAGS': '${_defines(CPPDEFPREFIX, CPPDEFINES, CPPDEFSUFFIX, __env__)}', '_CPPINCFLAGS': '$( ${_concat(INCPREFIX, CPPPATH, INCSUFFIX, __env__, RDirs, TARGET, SOURCE)} $)', '_LIBDIRFLAGS': '$( ${_concat(LIBDIRPREFIX, LIBPATH, LIBDIRSUFFIX, __env__, RDirs, TARGET, SOURCE)} $)', '_LIBFLAGS': '${_concat(LIBLINKPREFIX, LIBS, LIBLINKSUFFIX, __env__)}', '_concat': <function _concat at 0x700000>, '_defines': <function _defines at 0x700000>, '_stripixes': <function _stripixes at 0x700000>} scons: done reading SConscript files. scons: Building targets ... scons: `.' is up to date. scons: done building targets. </PRE ><P > The construction environments in these examples have actually been restricted to just gcc and Visual C++, respectively. In a real-life situation, the construction environments will likely contain a great many more variables. Also note that we've massaged the example output above to make the memory address of all objects a constant 0x700000. In reality, you would see a different hexadecimal number for each object. </P ><P > To make it easier to see just what you're interested in, the <CODE CLASS="function" >Dump</CODE > method allows you to specify a specific constrcution variable that you want to disply. For example, it's not unusual to want to verify the external environment used to execute build commands, to make sure that the PATH and other environment variables are set up the way they should be. You can do this as follows: </P ><PRE CLASS="programlisting" > env = Environment() print env.Dump('ENV') </PRE ><P > Which might display the following when executed on a POSIX system: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons</KBD > scons: Reading SConscript files ... {'PATH': '/usr/local/bin:/opt/bin:/bin:/usr/bin'} scons: done reading SConscript files. scons: Building targets ... scons: `.' is up to date. scons: done building targets. </PRE ><P > And the following when executed on a Windows system: </P ><PRE CLASS="screen" > C:\><KBD CLASS="userinput" >scons</KBD > scons: Reading SConscript files ... { 'INCLUDE': 'C:\\Program Files\\Microsoft Visual Studio/VC98\\include', 'LIB': 'C:\\Program Files\\Microsoft Visual Studio/VC98\\lib', 'PATH': 'C:\\Program Files\\Microsoft Visual Studio\\Common\\tools\\WIN95;C:\\Program Files\\Microsoft Visual Studio\\Common\\MSDev98\\bin;C:\\Program Files\\Microsoft Visual Studio\\Common\\tools;C:\\Program Files\\Microsoft Visual Studio/VC98\\bin', 'PATHEXT': '.COM;.EXE;.BAT;.CMD', 'SystemRoot': 'C:/WINDOWS'} scons: done reading SConscript files. scons: Building targets ... scons: `.' is up to date. scons: done building targets. </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4619" >29.3. What Dependencies Does <SPAN CLASS="application" >SCons</SPAN > Know About? the <TT CLASS="literal" >--tree</TT > Option</A ></H2 ><P > Sometimes the best way to try to figure out what <SPAN CLASS="application" >SCons</SPAN > is doing is simply to take a look at the dependency graph that it constructs based on your <TT CLASS="filename" >SConscript</TT > files. The <TT CLASS="literal" >--tree</TT > option will display all or part of the <SPAN CLASS="application" >SCons</SPAN > dependency graph in an "ASCII art" graphical format that shows the dependency hierarchy. </P ><P > For example, given the following input <TT CLASS="filename" >SConstruct</TT > file: </P ><PRE CLASS="programlisting" > env = Environment(CPPPATH = ['.']) env.Program('prog', ['f1.c', 'f2.c', 'f3.c']) </PRE ><P > Running <SPAN CLASS="application" >SCons</SPAN > with the <TT CLASS="literal" >--tree=all</TT > option yields: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q --tree=all</KBD > cc -o f1.o -c -I. f1.c cc -o f2.o -c -I. f2.c cc -o f3.o -c -I. f3.c cc -o prog f1.o f2.o f3.o +-. +-SConstruct +-f1.c +-f1.o | +-f1.c | +-inc.h +-f2.c +-f2.o | +-f2.c | +-inc.h +-f3.c +-f3.o | +-f3.c | +-inc.h +-inc.h +-prog +-f1.o | +-f1.c | +-inc.h +-f2.o | +-f2.c | +-inc.h +-f3.o +-f3.c +-inc.h </PRE ><P > The tree will also be printed when the <TT CLASS="literal" >-n</TT > (no execute) option is used, which allows you to examine the dependency graph for a configuration without actually rebuilding anything in the tree. </P ><P > The <TT CLASS="literal" >--tree</TT > option only prints the dependency graph for the specified targets (or the default target(s) if none are specified on the command line). So if you specify a target like <TT CLASS="filename" >f2.o</TT > on the command line, the <TT CLASS="literal" >--tree</TT > option will only print the dependency graph for that file: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q --tree=all f2.o</KBD > cc -o f2.o -c -I. f2.c +-f2.o +-f2.c +-inc.h </PRE ><P > This is, of course, useful for restricting the output from a very large build configuration to just a portion in which you're interested. Multiple targets are fine, in which case a tree will be printed for each specified target: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q --tree=all f1.o f3.o</KBD > cc -o f1.o -c -I. f1.c +-f1.o +-f1.c +-inc.h cc -o f3.o -c -I. f3.c +-f3.o +-f3.c +-inc.h </PRE ><P > The <TT CLASS="literal" >status</TT > argument may be used to tell <SPAN CLASS="application" >SCons</SPAN > to print status information about each file in the dependency graph: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q --tree=status</KBD > cc -o f1.o -c -I. f1.c cc -o f2.o -c -I. f2.c cc -o f3.o -c -I. f3.c cc -o prog f1.o f2.o f3.o E = exists R = exists in repository only b = implicit builder B = explicit builder S = side effect P = precious A = always build C = current N = no clean H = no cache [E b ]+-. [E C ] +-SConstruct [E C ] +-f1.c [E B C ] +-f1.o [E C ] | +-f1.c [E C ] | +-inc.h [E C ] +-f2.c [E B C ] +-f2.o [E C ] | +-f2.c [E C ] | +-inc.h [E C ] +-f3.c [E B C ] +-f3.o [E C ] | +-f3.c [E C ] | +-inc.h [E C ] +-inc.h [E B C ] +-prog [E B C ] +-f1.o [E C ] | +-f1.c [E C ] | +-inc.h [E B C ] +-f2.o [E C ] | +-f2.c [E C ] | +-inc.h [E B C ] +-f3.o [E C ] +-f3.c [E C ] +-inc.h </PRE ><P > Note that <TT CLASS="literal" >--tree=all,status</TT > is equivalent; the <TT CLASS="literal" >all</TT > is assumed if only <TT CLASS="literal" >status</TT > is present. As an alternative to <TT CLASS="literal" >all</TT >, you can specify <TT CLASS="literal" >--tree=derived</TT > to have <SPAN CLASS="application" >SCons</SPAN > only print derived targets in the tree output, skipping source files (like <TT CLASS="filename" >.c</TT > and <TT CLASS="filename" >.h</TT > files): </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q --tree=derived</KBD > cc -o f1.o -c -I. f1.c cc -o f2.o -c -I. f2.c cc -o f3.o -c -I. f3.c cc -o prog f1.o f2.o f3.o +-. +-f1.o +-f2.o +-f3.o +-prog +-f1.o +-f2.o +-f3.o </PRE ><P > You can use the <TT CLASS="literal" >status</TT > modifier with <TT CLASS="literal" >derived</TT > as well: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q --tree=derived,status</KBD > cc -o f1.o -c -I. f1.c cc -o f2.o -c -I. f2.c cc -o f3.o -c -I. f3.c cc -o prog f1.o f2.o f3.o E = exists R = exists in repository only b = implicit builder B = explicit builder S = side effect P = precious A = always build C = current N = no clean H = no cache [E b ]+-. [E B C ] +-f1.o [E B C ] +-f2.o [E B C ] +-f3.o [E B C ] +-prog [E B C ] +-f1.o [E B C ] +-f2.o [E B C ] +-f3.o </PRE ><P > Note that the order of the <TT CLASS="literal" >--tree=</TT > arguments doesn't matter; <TT CLASS="literal" >--tree=status,derived</TT > is completely equivalent. </P ><P > The default behavior of the <TT CLASS="literal" >--tree</TT > option is to repeat all of the dependencies each time the library dependency (or any other dependency file) is encountered in the tree. If certain target files share other target files, such as two programs that use the same library: </P ><PRE CLASS="programlisting" > env = Environment(CPPPATH = ['.'], LIBS = ['foo'], LIBPATH = ['.']) env.Library('foo', ['f1.c', 'f2.c', 'f3.c']) env.Program('prog1.c') env.Program('prog2.c') </PRE ><P > Then there can be a <SPAN CLASS="emphasis" ><I CLASS="emphasis" >lot</I ></SPAN > of repetition in the <TT CLASS="literal" >--tree=</TT > output: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q --tree=all</KBD > cc -o f1.o -c -I. f1.c cc -o f2.o -c -I. f2.c cc -o f3.o -c -I. f3.c ar rc libfoo.a f1.o f2.o f3.o ranlib libfoo.a cc -o prog1.o -c -I. prog1.c cc -o prog1 prog1.o -L. -lfoo cc -o prog2.o -c -I. prog2.c cc -o prog2 prog2.o -L. -lfoo +-. +-SConstruct +-f1.c +-f1.o | +-f1.c | +-inc.h +-f2.c +-f2.o | +-f2.c | +-inc.h +-f3.c +-f3.o | +-f3.c | +-inc.h +-inc.h +-libfoo.a | +-f1.o | | +-f1.c | | +-inc.h | +-f2.o | | +-f2.c | | +-inc.h | +-f3.o | +-f3.c | +-inc.h +-prog1 | +-prog1.o | | +-prog1.c | | +-inc.h | +-libfoo.a | +-f1.o | | +-f1.c | | +-inc.h | +-f2.o | | +-f2.c | | +-inc.h | +-f3.o | +-f3.c | +-inc.h +-prog1.c +-prog1.o | +-prog1.c | +-inc.h +-prog2 | +-prog2.o | | +-prog2.c | | +-inc.h | +-libfoo.a | +-f1.o | | +-f1.c | | +-inc.h | +-f2.o | | +-f2.c | | +-inc.h | +-f3.o | +-f3.c | +-inc.h +-prog2.c +-prog2.o +-prog2.c +-inc.h </PRE ><P > In a large configuration with many internal libraries and include files, this can very quickly lead to huge output trees. To help make this more manageable, a <TT CLASS="literal" >prune</TT > modifier may be added to the option list, in which case <SPAN CLASS="application" >SCons</SPAN > will print the name of a target that has already been visited during the tree-printing in <TT CLASS="literal" >[square brackets]</TT > as an indication that the dependencies of the target file may be found by looking farther up the tree: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q --tree=prune</KBD > cc -o f1.o -c -I. f1.c cc -o f2.o -c -I. f2.c cc -o f3.o -c -I. f3.c ar rc libfoo.a f1.o f2.o f3.o ranlib libfoo.a cc -o prog1.o -c -I. prog1.c cc -o prog1 prog1.o -L. -lfoo cc -o prog2.o -c -I. prog2.c cc -o prog2 prog2.o -L. -lfoo +-. +-SConstruct +-f1.c +-f1.o | +-f1.c | +-inc.h +-f2.c +-f2.o | +-f2.c | +-inc.h +-f3.c +-f3.o | +-f3.c | +-inc.h +-inc.h +-libfoo.a | +-[f1.o] | +-[f2.o] | +-[f3.o] +-prog1 | +-prog1.o | | +-prog1.c | | +-inc.h | +-[libfoo.a] +-prog1.c +-[prog1.o] +-prog2 | +-prog2.o | | +-prog2.c | | +-inc.h | +-[libfoo.a] +-prog2.c +-[prog2.o] </PRE ><P > Like the <TT CLASS="literal" >status</TT > keyword, the <TT CLASS="literal" >prune</TT > argument by itself is equivalent to <TT CLASS="literal" >--tree=all,prune</TT >. </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4689" >29.4. How is <SPAN CLASS="application" >SCons</SPAN > Constructing the Command Lines It Executes? the <TT CLASS="literal" >--debug=presub</TT > Option</A ></H2 ><P > Sometimes it's useful to look at the pre-substitution string that <SPAN CLASS="application" >SCons</SPAN > uses to generate the command lines it executes. This can be done with the <TT CLASS="literal" >--debug=presub</TT > option: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q --debug=presub</KBD > Building prog.o with action: $CC -o $TARGET -c $CFLAGS $CCFLAGS $_CCOMCOM $SOURCES cc -o prog.o -c -I. prog.c Building prog with action: $SMART_LINKCOM cc -o prog prog.o </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4698" >29.5. Where is <SPAN CLASS="application" >SCons</SPAN > Searching for Libraries? the <TT CLASS="literal" >--debug=findlibs</TT > Option</A ></H2 ><P > To get some insight into what library names <SPAN CLASS="application" >SCons</SPAN > is searching for, and in which directories it is searching, Use the <TT CLASS="literal" >--debug=findlibs</TT > option. Given the following input <TT CLASS="filename" >SConstruct</TT > file: </P ><PRE CLASS="programlisting" > env = Environment(LIBPATH = ['libs1', 'libs2']) env.Program('prog.c', LIBS=['foo', 'bar']) </PRE ><P > And the libraries <TT CLASS="filename" >libfoo.a</TT > and <TT CLASS="filename" >libbar.a</TT > in <TT CLASS="filename" >libs1</TT > and <TT CLASS="filename" >libs2</TT >, respectively, use of the <TT CLASS="literal" >--debug=findlibs</TT > option yields: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q --debug=findlibs</KBD > findlibs: looking for 'libfoo.a' in 'libs1' ... findlibs: ... FOUND 'libfoo.a' in 'libs1' findlibs: looking for 'libfoo.so' in 'libs1' ... findlibs: looking for 'libfoo.so' in 'libs2' ... findlibs: looking for 'libbar.a' in 'libs1' ... findlibs: looking for 'libbar.a' in 'libs2' ... findlibs: ... FOUND 'libbar.a' in 'libs2' findlibs: looking for 'libbar.so' in 'libs1' ... findlibs: looking for 'libbar.so' in 'libs2' ... cc -o prog.o -c prog.c cc -o prog prog.o -Llibs1 -Llibs2 -lfoo -lbar </PRE ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4715" >29.6. Where is <SPAN CLASS="application" >SCons</SPAN > Blowing Up? the <TT CLASS="literal" >--debug=stacktrace</TT > Option</A ></H2 ><P > In general, <SPAN CLASS="application" >SCons</SPAN > tries to keep its error messages short and informative. That means we usually try to avoid showing the stack traces that are familiar to experienced Python programmers, since they usually contain much more information than is useful to most people. </P ><P > For example, the following <TT CLASS="filename" >SConstruct</TT > file: </P ><PRE CLASS="programlisting" > Program('prog.c') </PRE ><P > Generates the following error if the <TT CLASS="filename" >prog.c</TT > file does not exist: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q</KBD > scons: *** Source `prog.c' not found, needed by target `prog.o'. Stop. </PRE ><P > In this case, the error is pretty obvious. But if it weren't, and you wanted to try to get more information about the error, the <TT CLASS="literal" >--debug=stacktrace</TT > option would show you exactly where in the <SPAN CLASS="application" >SCons</SPAN > source code the problem occurs: </P ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q --debug=stacktrace</KBD > scons: *** Source `prog.c' not found, needed by target `prog.o'. Stop. scons: internal stack trace: File "bootstrap/src/engine/SCons/Job.py", line 198, in start File "bootstrap/src/engine/SCons/Script/Main.py", line 169, in prepare File "bootstrap/src/engine/SCons/Taskmaster.py", line 184, in prepare File "bootstrap/src/engine/SCons/Executor.py", line 171, in prepare </PRE ><P > Of course, if you do need to dive into the <SPAN CLASS="application" >SCons</SPAN > source code, we'd like to know if, or how, the error messages or troubleshooting options could have been improved to avoid that. Not everyone has the necessary time or Python skill to dive into the source code, and we'd like to improve <SPAN CLASS="application" >SCons</SPAN > for those people as well... </P ></DIV ><DIV CLASS="section" ><HR><H2 CLASS="section" ><A NAME="AEN4736" >29.7. How is <SPAN CLASS="application" >SCons</SPAN > Making Its Decisions? the <TT CLASS="literal" >--taskmastertrace</TT > Option</A ></H2 ><P > The internal <SPAN CLASS="application" >SCons</SPAN > subsystem that handles walking the dependency graph and controls the decision-making about what to rebuild is the <TT CLASS="literal" >Taskmaster</TT >. <SPAN CLASS="application" >SCons</SPAN > supports a <TT CLASS="literal" >--taskmastertrace</TT > option that tells the Taskmaster to print information about the children (dependencies) of the various Nodes on its walk down the graph, which specific dependent Nodes are being evaluated, and in what order. </P ><P > The <TT CLASS="literal" >--taskmastertrace</TT > option takes as an argument the name of a file in which to put the trace output, with <TT CLASS="filename" >-</TT > (a single hyphen) indicating that the trace messages should be printed to the standard output: </P ><PRE CLASS="programlisting" > env = Environment(CPPPATH = ['.']) env.Program('prog.c') </PRE ><PRE CLASS="screen" > % <KBD CLASS="userinput" >scons -Q --taskmastertrace=- prog</KBD > Taskmaster: Looking for a node to evaluate Taskmaster: Considering node <no_state 0 'prog'> and its children: Taskmaster: <no_state 0 'prog.o'> Taskmaster: adjusting ref count: <pending 1 'prog'> Taskmaster: Considering node <no_state 0 'prog.o'> and its children: Taskmaster: <no_state 0 'prog.c'> Taskmaster: <no_state 0 'inc.h'> Taskmaster: adjusting ref count: <pending 1 'prog.o'> Taskmaster: adjusting ref count: <pending 2 'prog.o'> Taskmaster: Considering node <no_state 0 'prog.c'> and its children: Taskmaster: Evaluating <pending 0 'prog.c'> Taskmaster: Looking for a node to evaluate Taskmaster: Considering node <no_state 0 'inc.h'> and its children: Taskmaster: Evaluating <pending 0 'inc.h'> Taskmaster: Looking for a node to evaluate Taskmaster: Considering node <pending 0 'prog.o'> and its children: Taskmaster: <up_to_date 0 'prog.c'> Taskmaster: <up_to_date 0 'inc.h'> Taskmaster: Evaluating <pending 0 'prog.o'> cc -o prog.o -c -I. prog.c Taskmaster: Looking for a node to evaluate Taskmaster: Considering node <pending 0 'prog'> and its children: Taskmaster: <executed 0 'prog.o'> Taskmaster: Evaluating <pending 0 'prog'> cc -o prog prog.o Taskmaster: Looking for a node to evaluate Taskmaster: No candidate anymore. </PRE ><P > The <TT CLASS="literal" >--taskmastertrace</TT > option doesn't provide information about the actual calculations involved in deciding if a file is up-to-date, but it does show all of the dependencies it knows about for each Node, and the order in which those dependencies are evaluated. This can be useful as an alternate way to determine whether or not your <SPAN CLASS="application" >SCons</SPAN > configuration, or the implicit dependency scan, has actually identified all the correct dependencies you want it to. </P ></DIV ></DIV ><DIV CLASS="appendix" ><HR><H1 ><A NAME="app-variables" ></A >Appendix A. Construction Variables</H1 ><P > This appendix contains descriptions of all of the construction variables that are <SPAN CLASS="emphasis" ><I CLASS="emphasis" >potentially</I ></SPAN > available "out of the box" in this version of SCons. Whether or not setting a construction variable in a construction environment will actually have an effect depends on whether any of the Tools and/or Builders that use the variable have been included in the construction environment. </P ><P > In this appendix, we have appended the initial <CODE CLASS="envar" >$</CODE > (dollar sign) to the beginning of each variable name when it appears in the text, but left off the dollar sign in the left-hand column where the name appears for each entry. </P ><P ></P ><DIV CLASS="variablelist" ><DL ><DT ><A NAME="cv-AR" ></A ><CODE CLASS="envar" >AR</CODE ></DT ><DD ><P > The static library archiver. </P ></DD ><DT ><A NAME="cv-ARCHITECTURE" ></A ><CODE CLASS="envar" >ARCHITECTURE</CODE ></DT ><DD ><P > Specifies the system architecture for which the package is being built. The default is the system architecture of the machine on which SCons is running. This is used to fill in the <TT CLASS="literal" >Architecture:</TT > field in an Ipkg <TT CLASS="filename" >control</TT > file, and as part of the name of a generated RPM file. </P ></DD ><DT ><A NAME="cv-ARCOM" ></A ><CODE CLASS="envar" >ARCOM</CODE ></DT ><DD ><P > The command line used to generate a static library from object files. </P ></DD ><DT ><A NAME="cv-ARCOMSTR" ></A ><CODE CLASS="envar" >ARCOMSTR</CODE ></DT ><DD ><P > The string displayed when an object file is generated from an assembly-language source file. If this is not set, then <A HREF="#cv-ARCOM" ><CODE CLASS="envar" >$ARCOM</CODE ></A > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(ARCOMSTR = "Archiving $TARGET") </PRE ></DD ><DT ><A NAME="cv-ARFLAGS" ></A ><CODE CLASS="envar" >ARFLAGS</CODE ></DT ><DD ><P > General options passed to the static library archiver. </P ></DD ><DT ><A NAME="cv-AS" ></A ><CODE CLASS="envar" >AS</CODE ></DT ><DD ><P > The assembler. </P ></DD ><DT ><A NAME="cv-ASCOM" ></A ><CODE CLASS="envar" >ASCOM</CODE ></DT ><DD ><P > The command line used to generate an object file from an assembly-language source file. </P ></DD ><DT ><A NAME="cv-ASCOMSTR" ></A ><CODE CLASS="envar" >ASCOMSTR</CODE ></DT ><DD ><P > The string displayed when an object file is generated from an assembly-language source file. If this is not set, then <A HREF="#cv-ASCOM" ><CODE CLASS="envar" >$ASCOM</CODE ></A > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(ASCOMSTR = "Assembling $TARGET") </PRE ></DD ><DT ><A NAME="cv-ASFLAGS" ></A ><CODE CLASS="envar" >ASFLAGS</CODE ></DT ><DD ><P > General options passed to the assembler. </P ></DD ><DT ><A NAME="cv-ASPPCOM" ></A ><CODE CLASS="envar" >ASPPCOM</CODE ></DT ><DD ><P > The command line used to assemble an assembly-language source file into an object file after first running the file through the C preprocessor. Any options specified in the <A HREF="#cv-ASFLAGS" ><CODE CLASS="envar" >$ASFLAGS</CODE ></A > and <A HREF="#cv-CPPFLAGS" ><CODE CLASS="envar" >$CPPFLAGS</CODE ></A > construction variables are included on this command line. </P ></DD ><DT ><A NAME="cv-ASPPCOMSTR" ></A ><CODE CLASS="envar" >ASPPCOMSTR</CODE ></DT ><DD ><P > The string displayed when an object file is generated from an assembly-language source file after first running the file through the C preprocessor. If this is not set, then <A HREF="#cv-ASPPCOM" ><CODE CLASS="envar" >$ASPPCOM</CODE ></A > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(ASPPCOMSTR = "Assembling $TARGET") </PRE ></DD ><DT ><A NAME="cv-ASPPFLAGS" ></A ><CODE CLASS="envar" >ASPPFLAGS</CODE ></DT ><DD ><P > General options when an assembling an assembly-language source file into an object file after first running the file through the C preprocessor. The default is to use the value of <A HREF="#cv-ASFLAGS" ><CODE CLASS="envar" >$ASFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="cv-BIBTEX" ></A ><CODE CLASS="envar" >BIBTEX</CODE ></DT ><DD ><P > The bibliography generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter. </P ></DD ><DT ><A NAME="cv-BIBTEXCOM" ></A ><CODE CLASS="envar" >BIBTEXCOM</CODE ></DT ><DD ><P > The command line used to call the bibliography generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter. </P ></DD ><DT ><A NAME="cv-BIBTEXCOMSTR" ></A ><CODE CLASS="envar" >BIBTEXCOMSTR</CODE ></DT ><DD ><P > The string displayed when generating a bibliography for TeX or LaTeX. If this is not set, then <A HREF="#cv-BIBTEXCOM" ><CODE CLASS="envar" >$BIBTEXCOM</CODE ></A > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(BIBTEXCOMSTR = "Generating bibliography $TARGET") </PRE ></DD ><DT ><A NAME="cv-BIBTEXFLAGS" ></A ><CODE CLASS="envar" >BIBTEXFLAGS</CODE ></DT ><DD ><P > General options passed to the bibliography generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter. </P ></DD ><DT ><A NAME="cv-BITKEEPER" ></A ><CODE CLASS="envar" >BITKEEPER</CODE ></DT ><DD ><P > The BitKeeper executable. </P ></DD ><DT ><A NAME="cv-BITKEEPERCOM" ></A ><CODE CLASS="envar" >BITKEEPERCOM</CODE ></DT ><DD ><P > The command line for fetching source files using BitKeeper. </P ></DD ><DT ><A NAME="cv-BITKEEPERCOMSTR" ></A ><CODE CLASS="envar" >BITKEEPERCOMSTR</CODE ></DT ><DD ><P > The string displayed when fetching a source file using BitKeeper. If this is not set, then <A HREF="#cv-BITKEEPERCOM" ><CODE CLASS="envar" >$BITKEEPERCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-BITKEEPERGET" ></A ><CODE CLASS="envar" >BITKEEPERGET</CODE ></DT ><DD ><P > The command (<A HREF="#cv-BITKEEPER" ><CODE CLASS="envar" >$BITKEEPER</CODE ></A >) and subcommand for fetching source files using BitKeeper. </P ></DD ><DT ><A NAME="cv-BITKEEPERGETFLAGS" ></A ><CODE CLASS="envar" >BITKEEPERGETFLAGS</CODE ></DT ><DD ><P > Options that are passed to the BitKeeper <B CLASS="command" >get</B > subcommand. </P ></DD ><DT ><A NAME="cv-BUILDERS" ></A ><CODE CLASS="envar" >BUILDERS</CODE ></DT ><DD ><P > A dictionary mapping the names of the builders available through this environment to underlying Builder objects. Builders named Alias, CFile, CXXFile, DVI, Library, Object, PDF, PostScript, and Program are available by default. If you initialize this variable when an Environment is created: </P ><PRE CLASS="programlisting" > env = Environment(BUILDERS = {'NewBuilder' : foo}) </PRE ><P > the default Builders will no longer be available. To use a new Builder object in addition to the default Builders, add your new Builder object like this: </P ><PRE CLASS="programlisting" > env = Environment() env.Append(BUILDERS = {'NewBuilder' : foo}) </PRE ><P > or this: </P ><PRE CLASS="programlisting" > env = Environment() env['BUILDERS]['NewBuilder'] = foo </PRE ></DD ><DT ><A NAME="cv-CC" ></A ><CODE CLASS="envar" >CC</CODE ></DT ><DD ><P > The C compiler. </P ></DD ><DT ><A NAME="cv-CCCOM" ></A ><CODE CLASS="envar" >CCCOM</CODE ></DT ><DD ><P > The command line used to compile a C source file to a (static) object file. Any options specified in the <A HREF="#cv-CFLAGS" ><CODE CLASS="envar" >$CFLAGS</CODE ></A >, <A HREF="#cv-CCFLAGS" ><CODE CLASS="envar" >$CCFLAGS</CODE ></A > and <A HREF="#cv-CPPFLAGS" ><CODE CLASS="envar" >$CPPFLAGS</CODE ></A > construction variables are included on this command line. </P ></DD ><DT ><A NAME="cv-CCCOMSTR" ></A ><CODE CLASS="envar" >CCCOMSTR</CODE ></DT ><DD ><P > The string displayed when a C source file is compiled to a (static) object file. If this is not set, then <A HREF="#cv-CCCOM" ><CODE CLASS="envar" >$CCCOM</CODE ></A > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(CCCOMSTR = "Compiling static object $TARGET") </PRE ></DD ><DT ><A NAME="cv-CCFLAGS" ></A ><CODE CLASS="envar" >CCFLAGS</CODE ></DT ><DD ><P > General options that are passed to the C and C++ compilers. </P ></DD ><DT ><A NAME="cv-CCPCHFLAGS" ></A ><CODE CLASS="envar" >CCPCHFLAGS</CODE ></DT ><DD ><P > Options added to the compiler command line to support building with precompiled headers. The default value expands expands to the appropriate Microsoft Visual C++ command-line options when the <A HREF="#cv-PCH" ><CODE CLASS="envar" >$PCH</CODE ></A > construction variable is set. </P ></DD ><DT ><A NAME="cv-CCPDBFLAGS" ></A ><CODE CLASS="envar" >CCPDBFLAGS</CODE ></DT ><DD ><P > Options added to the compiler command line to support storing debugging information in a Microsoft Visual C++ PDB file. The default value expands expands to appropriate Microsoft Visual C++ command-line options when the <A HREF="#cv-PDB" ><CODE CLASS="envar" >$PDB</CODE ></A > construction variable is set.</P ><P >The Visual C++ compiler option that SCons uses by default to generate PDB information is <CODE CLASS="option" >/Z7</CODE >. This works correctly with parallel (<CODE CLASS="option" >-j</CODE >) builds because it embeds the debug information in the intermediate object files, as opposed to sharing a single PDB file between multiple object files. This is also the only way to get debug information embedded into a static library. Using the <CODE CLASS="option" >/Zi</CODE > instead may yield improved link-time performance, although parallel builds will no longer work.</P ><P >You can generate PDB files with the <CODE CLASS="option" >/Zi</CODE > switch by overriding the default <A HREF="#cv-CCPDBFLAGS" ><CODE CLASS="envar" >$CCPDBFLAGS</CODE ></A > variable as follows: </P ><PRE CLASS="programlisting" > env['CCPDBFLAGS'] = ['${(PDB and "/Zi /Fd%s" % File(PDB)) or ""}'] </PRE ><P > An alternative would be to use the <CODE CLASS="option" >/Zi</CODE > to put the debugging information in a separate <TT CLASS="filename" >.pdb</TT > file for each object file by overriding the <A HREF="#cv-CCPDBFLAGS" ><CODE CLASS="envar" >$CCPDBFLAGS</CODE ></A > variable as follows: </P ><PRE CLASS="programlisting" > env['CCPDBFLAGS'] = '/Zi /Fd${TARGET}.pdb' </PRE ></DD ><DT ><A NAME="cv-CCVERSION" ></A ><CODE CLASS="envar" >CCVERSION</CODE ></DT ><DD ><P > The version number of the C compiler. This may or may not be set, depending on the specific C compiler being used. </P ></DD ><DT ><A NAME="cv-CFILESUFFIX" ></A ><CODE CLASS="envar" >CFILESUFFIX</CODE ></DT ><DD ><P > The suffix for C source files. This is used by the internal CFile builder when generating C files from Lex (.l) or YACC (.y) input files. The default suffix, of course, is <TT CLASS="filename" >.c</TT > (lower case). On case-insensitive systems (like Windows), SCons also treats <TT CLASS="filename" >.C</TT > (upper case) files as C files. </P ></DD ><DT ><A NAME="cv-CFLAGS" ></A ><CODE CLASS="envar" >CFLAGS</CODE ></DT ><DD ><P > General options that are passed to the C compiler (C only; not C++). </P ></DD ><DT ><A NAME="cv-CHANGE_SPECFILE" ></A ><CODE CLASS="envar" >CHANGE_SPECFILE</CODE ></DT ><DD ><P > A hook for modifying the file that controls the packaging build (the <TT CLASS="filename" >.spec</TT > for RPM, the <TT CLASS="filename" >control</TT > for Ipkg, the <TT CLASS="filename" >.wxs</TT > for MSI). If set, the function will be called after the SCons template for the file has been written. XXX </P ></DD ><DT ><A NAME="cv-CHANGELOG" ></A ><CODE CLASS="envar" >CHANGELOG</CODE ></DT ><DD ><P > The name of a file containing the change log text to be included in the package. This is included as the <TT CLASS="literal" >%changelog</TT > section of the RPM <TT CLASS="filename" >.spec</TT > file. </P ></DD ><DT ><A NAME="cv-_concat" ></A ><CODE CLASS="envar" >_concat</CODE ></DT ><DD ><P > A function used to produce variables like <CODE CLASS="envar" >$_CPPINCFLAGS</CODE >. It takes four or five arguments: a prefix to concatenate onto each element, a list of elements, a suffix to concatenate onto each element, an environment for variable interpolation, and an optional function that will be called to transform the list before concatenation. </P ><PRE CLASS="programlisting" > env['_CPPINCFLAGS'] = '$( ${_concat(INCPREFIX, CPPPATH, INCSUFFIX, __env__, RDirs)} $)', </PRE ></DD ><DT ><A NAME="cv-CONFIGUREDIR" ></A ><CODE CLASS="envar" >CONFIGUREDIR</CODE ></DT ><DD ><P > The name of the directory in which Configure context test files are written. The default is <TT CLASS="filename" >.sconf_temp</TT > in the top-level directory containing the <TT CLASS="filename" >SConstruct</TT > file. </P ></DD ><DT ><A NAME="cv-CONFIGURELOG" ></A ><CODE CLASS="envar" >CONFIGURELOG</CODE ></DT ><DD ><P > The name of the Configure context log file. The default is <TT CLASS="filename" >config.log</TT > in the top-level directory containing the <TT CLASS="filename" >SConstruct</TT > file. </P ></DD ><DT ><A NAME="cv-_CPPDEFFLAGS" ></A ><CODE CLASS="envar" >_CPPDEFFLAGS</CODE ></DT ><DD ><P > An automatically-generated construction variable containing the C preprocessor command-line options to define values. The value of <CODE CLASS="envar" >$_CPPDEFFLAGS</CODE > is created by appending <CODE CLASS="envar" >$CPPDEFPREFIX</CODE > and <CODE CLASS="envar" >$CPPDEFSUFFIX</CODE > to the beginning and end of each directory in <CODE CLASS="envar" >$CPPDEFINES</CODE >. </P ></DD ><DT ><A NAME="cv-CPPDEFINES" ></A ><CODE CLASS="envar" >CPPDEFINES</CODE ></DT ><DD ><P > A platform independent specification of C preprocessor definitions. The definitions will be added to command lines through the automatically-generated <CODE CLASS="envar" >$_CPPDEFFLAGS</CODE > construction variable (see above), which is constructed according to the type of value of <CODE CLASS="envar" >$CPPDEFINES</CODE >:</P ><P >If <CODE CLASS="envar" >$CPPDEFINES</CODE > is a string, the values of the <CODE CLASS="envar" >$CPPDEFPREFIX</CODE > and <CODE CLASS="envar" >$CPPDEFSUFFIX</CODE > construction variables will be added to the beginning and end. </P ><PRE CLASS="programlisting" > # Will add -Dxyz to POSIX compiler command lines, # and /Dxyz to Microsoft Visual C++ command lines. env = Environment(CPPDEFINES='xyz') </PRE ><P > If <CODE CLASS="envar" >$CPPDEFINES</CODE > is a list, the values of the <CODE CLASS="envar" >$CPPDEFPREFIX</CODE > and <CODE CLASS="envar" >$CPPDEFSUFFIX</CODE > construction variables will be appended to the beginning and end of each element in the list. If any element is a list or tuple, then the first item is the name being defined and the second item is its value: </P ><PRE CLASS="programlisting" > # Will add -DB=2 -DA to POSIX compiler command lines, # and /DB=2 /DA to Microsoft Visual C++ command lines. env = Environment(CPPDEFINES=[('B', 2), 'A']) </PRE ><P > If <CODE CLASS="envar" >$CPPDEFINES</CODE > is a dictionary, the values of the <CODE CLASS="envar" >$CPPDEFPREFIX</CODE > and <CODE CLASS="envar" >$CPPDEFSUFFIX</CODE > construction variables will be appended to the beginning and end of each item from the dictionary. The key of each dictionary item is a name being defined to the dictionary item's corresponding value; if the value is <TT CLASS="literal" >None</TT >, then the name is defined without an explicit value. Note that the resulting flags are sorted by keyword to ensure that the order of the options on the command line is consistent each time <SPAN CLASS="application" >scons</SPAN > is run. </P ><PRE CLASS="programlisting" > # Will add -DA -DB=2 to POSIX compiler command lines, # and /DA /DB=2 to Microsoft Visual C++ command lines. env = Environment(CPPDEFINES={'B':2, 'A':None}) </PRE ></DD ><DT ><A NAME="cv-CPPDEFPREFIX" ></A ><CODE CLASS="envar" >CPPDEFPREFIX</CODE ></DT ><DD ><P > The prefix used to specify preprocessor definitions on the C compiler command line. This will be appended to the beginning of each definition in the <CODE CLASS="envar" >$CPPDEFINES</CODE > construction variable when the <CODE CLASS="envar" >$_CPPDEFFLAGS</CODE > variable is automatically generated. </P ></DD ><DT ><A NAME="cv-CPPDEFSUFFIX" ></A ><CODE CLASS="envar" >CPPDEFSUFFIX</CODE ></DT ><DD ><P > The suffix used to specify preprocessor definitions on the C compiler command line. This will be appended to the end of each definition in the <CODE CLASS="envar" >$CPPDEFINES</CODE > construction variable when the <CODE CLASS="envar" >$_CPPDEFFLAGS</CODE > variable is automatically generated. </P ></DD ><DT ><A NAME="cv-CPPFLAGS" ></A ><CODE CLASS="envar" >CPPFLAGS</CODE ></DT ><DD ><P > User-specified C preprocessor options. These will be included in any command that uses the C preprocessor, including not just compilation of C and C++ source files via the <A HREF="#cv-CCCOM" ><CODE CLASS="envar" >$CCCOM</CODE ></A >, <A HREF="#cv-SHCCCOM" ><CODE CLASS="envar" >$SHCCCOM</CODE ></A >, <A HREF="#cv-CXXCOM" ><CODE CLASS="envar" >$CXXCOM</CODE ></A > and <A HREF="#cv-SHCXXCOM" ><CODE CLASS="envar" >$SHCXXCOM</CODE ></A > command lines, but also the <A HREF="#cv-FORTRANPPCOM" ><CODE CLASS="envar" >$FORTRANPPCOM</CODE ></A >, <A HREF="#cv-SHFORTRANPPCOM" ><CODE CLASS="envar" >$SHFORTRANPPCOM</CODE ></A >, <A HREF="#cv-F77PPCOM" ><CODE CLASS="envar" >$F77PPCOM</CODE ></A > and <A HREF="#cv-SHF77PPCOM" ><CODE CLASS="envar" >$SHF77PPCOM</CODE ></A > command lines used to compile a Fortran source file, and the <A HREF="#cv-ASPPCOM" ><CODE CLASS="envar" >$ASPPCOM</CODE ></A > command line used to assemble an assembly language source file, after first running each file through the C preprocessor. Note that this variable does <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > contain <CODE CLASS="option" >-I</CODE > (or similar) include search path options that scons generates automatically from <A HREF="#cv-CPPPATH" ><CODE CLASS="envar" >$CPPPATH</CODE ></A >. See <A HREF="#cv-_CPPINCFLAGS" ><CODE CLASS="envar" >$_CPPINCFLAGS</CODE ></A >, below, for the variable that expands to those options. </P ></DD ><DT ><A NAME="cv-_CPPINCFLAGS" ></A ><CODE CLASS="envar" >_CPPINCFLAGS</CODE ></DT ><DD ><P > An automatically-generated construction variable containing the C preprocessor command-line options for specifying directories to be searched for include files. The value of <CODE CLASS="envar" >$_CPPINCFLAGS</CODE > is created by appending <CODE CLASS="envar" >$INCPREFIX</CODE > and <CODE CLASS="envar" >$INCSUFFIX</CODE > to the beginning and end of each directory in <CODE CLASS="envar" >$CPPPATH</CODE >. </P ></DD ><DT ><A NAME="cv-CPPPATH" ></A ><CODE CLASS="envar" >CPPPATH</CODE ></DT ><DD ><P > The list of directories that the C preprocessor will search for include directories. The C/C++ implicit dependency scanner will search these directories for include files. Don't explicitly put include directory arguments in CCFLAGS or CXXFLAGS because the result will be non-portable and the directories will not be searched by the dependency scanner. Note: directory names in CPPPATH will be looked-up relative to the SConscript directory when they are used in a command. To force <SPAN CLASS="application" >scons</SPAN > to look-up a directory relative to the root of the source tree use #: </P ><PRE CLASS="programlisting" > env = Environment(CPPPATH='#/include') </PRE ><P > The directory look-up can also be forced using the <CODE CLASS="function" >Dir</CODE >() function: </P ><PRE CLASS="programlisting" > include = Dir('include') env = Environment(CPPPATH=include) </PRE ><P > The directory list will be added to command lines through the automatically-generated <CODE CLASS="envar" >$_CPPINCFLAGS</CODE > construction variable, which is constructed by appending the values of the <CODE CLASS="envar" >$INCPREFIX</CODE > and <CODE CLASS="envar" >$INCSUFFIX</CODE > construction variables to the beginning and end of each directory in <CODE CLASS="envar" >$CPPPATH</CODE >. Any command lines you define that need the CPPPATH directory list should include <CODE CLASS="envar" >$_CPPINCFLAGS</CODE >: </P ><PRE CLASS="programlisting" > env = Environment(CCCOM="my_compiler $_CPPINCFLAGS -c -o $TARGET $SOURCE") </PRE ></DD ><DT ><A NAME="cv-CPPSUFFIXES" ></A ><CODE CLASS="envar" >CPPSUFFIXES</CODE ></DT ><DD ><P > The list of suffixes of files that will be scanned for C preprocessor implicit dependencies (#include lines). The default list is: </P ><PRE CLASS="programlisting" > [".c", ".C", ".cxx", ".cpp", ".c++", ".cc", ".h", ".H", ".hxx", ".hpp", ".hh", ".F", ".fpp", ".FPP", ".m", ".mm", ".S", ".spp", ".SPP"] </PRE ></DD ><DT ><A NAME="cv-CVS" ></A ><CODE CLASS="envar" >CVS</CODE ></DT ><DD ><P > The CVS executable. </P ></DD ><DT ><A NAME="cv-CVSCOFLAGS" ></A ><CODE CLASS="envar" >CVSCOFLAGS</CODE ></DT ><DD ><P > Options that are passed to the CVS checkout subcommand. </P ></DD ><DT ><A NAME="cv-CVSCOM" ></A ><CODE CLASS="envar" >CVSCOM</CODE ></DT ><DD ><P > The command line used to fetch source files from a CVS repository. </P ></DD ><DT ><A NAME="cv-CVSCOMSTR" ></A ><CODE CLASS="envar" >CVSCOMSTR</CODE ></DT ><DD ><P > The string displayed when fetching a source file from a CVS repository. If this is not set, then <A HREF="#cv-CVSCOM" ><CODE CLASS="envar" >$CVSCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-CVSFLAGS" ></A ><CODE CLASS="envar" >CVSFLAGS</CODE ></DT ><DD ><P > General options that are passed to CVS. By default, this is set to <TT CLASS="literal" >-d $CVSREPOSITORY</TT > to specify from where the files must be fetched. </P ></DD ><DT ><A NAME="cv-CVSREPOSITORY" ></A ><CODE CLASS="envar" >CVSREPOSITORY</CODE ></DT ><DD ><P > The path to the CVS repository. This is referenced in the default <A HREF="#cv-CVSFLAGS" ><CODE CLASS="envar" >$CVSFLAGS</CODE ></A > value. </P ></DD ><DT ><A NAME="cv-CXX" ></A ><CODE CLASS="envar" >CXX</CODE ></DT ><DD ><P > The C++ compiler. </P ></DD ><DT ><A NAME="cv-CXXCOM" ></A ><CODE CLASS="envar" >CXXCOM</CODE ></DT ><DD ><P > The command line used to compile a C++ source file to an object file. Any options specified in the <A HREF="#cv-CXXFLAGS" ><CODE CLASS="envar" >$CXXFLAGS</CODE ></A > and <A HREF="#cv-CPPFLAGS" ><CODE CLASS="envar" >$CPPFLAGS</CODE ></A > construction variables are included on this command line. </P ></DD ><DT ><A NAME="cv-CXXCOMSTR" ></A ><CODE CLASS="envar" >CXXCOMSTR</CODE ></DT ><DD ><P > The string displayed when a C++ source file is compiled to a (static) object file. If this is not set, then <A HREF="#cv-CXXCOM" ><CODE CLASS="envar" >$CXXCOM</CODE ></A > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(CXXCOMSTR = "Compiling static object $TARGET") </PRE ></DD ><DT ><A NAME="cv-CXXFILESUFFIX" ></A ><CODE CLASS="envar" >CXXFILESUFFIX</CODE ></DT ><DD ><P > The suffix for C++ source files. This is used by the internal CXXFile builder when generating C++ files from Lex (.ll) or YACC (.yy) input files. The default suffix is <TT CLASS="filename" >.cc</TT >. SCons also treats files with the suffixes <TT CLASS="filename" >.cpp</TT >, <TT CLASS="filename" >.cxx</TT >, <TT CLASS="filename" >.c++</TT >, and <TT CLASS="filename" >.C++</TT > as C++ files, and files with <TT CLASS="filename" >.mm</TT > suffixes as Objective C++ files. On case-sensitive systems (Linux, UNIX, and other POSIX-alikes), SCons also treats <TT CLASS="filename" >.C</TT > (upper case) files as C++ files. </P ></DD ><DT ><A NAME="cv-CXXFLAGS" ></A ><CODE CLASS="envar" >CXXFLAGS</CODE ></DT ><DD ><P > General options that are passed to the C++ compiler. By default, this includes the value of <A HREF="#cv-CCFLAGS" ><CODE CLASS="envar" >$CCFLAGS</CODE ></A >, so that setting <CODE CLASS="envar" >$CCFLAGS</CODE > affects both C and C++ compilation. If you want to add C++-specific flags, you must set or override the value of <A HREF="#cv-CXXFLAGS" ><CODE CLASS="envar" >$CXXFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="cv-CXXVERSION" ></A ><CODE CLASS="envar" >CXXVERSION</CODE ></DT ><DD ><P > The version number of the C++ compiler. This may or may not be set, depending on the specific C++ compiler being used. </P ></DD ><DT ><A NAME="cv-DESCRIPTION" ></A ><CODE CLASS="envar" >DESCRIPTION</CODE ></DT ><DD ><P > A long description of the project being packaged. This is included in the relevant section of the file that controls the packaging build. </P ></DD ><DT ><A NAME="cv-DESCRIPTION_lang" ></A ><CODE CLASS="envar" >DESCRIPTION_lang</CODE ></DT ><DD ><P > A language-specific long description for the specified <CODE CLASS="varname" >lang</CODE >. This is used to populate a <TT CLASS="literal" >%description -l</TT > section of an RPM <TT CLASS="filename" >.spec</TT > file. </P ></DD ><DT ><A NAME="cv-Dir" ></A ><CODE CLASS="envar" >Dir</CODE ></DT ><DD ><P > A function that converts a string into a Dir instance relative to the target being built. </P ></DD ><DT ><A NAME="cv-Dirs" ></A ><CODE CLASS="envar" >Dirs</CODE ></DT ><DD ><P > A function that converts a list of strings into a list of Dir instances relative to the target being built. </P ></DD ><DT ><A NAME="cv-DSUFFIXES" ></A ><CODE CLASS="envar" >DSUFFIXES</CODE ></DT ><DD ><P > The list of suffixes of files that will be scanned for imported D package files. The default list is: </P ><PRE CLASS="programlisting" > ['.d'] </PRE ></DD ><DT ><A NAME="cv-DVIPDF" ></A ><CODE CLASS="envar" >DVIPDF</CODE ></DT ><DD ><P > The TeX DVI file to PDF file converter. </P ></DD ><DT ><A NAME="cv-DVIPDFCOM" ></A ><CODE CLASS="envar" >DVIPDFCOM</CODE ></DT ><DD ><P > The command line used to convert TeX DVI files into a PDF file. </P ></DD ><DT ><A NAME="cv-DVIPDFCOMSTR" ></A ><CODE CLASS="envar" >DVIPDFCOMSTR</CODE ></DT ><DD ><P > The string displayed when a TeX DVI file is converted into a PDF file. If this is not set, then <A HREF="#cv-DVIPDFCOM" ><CODE CLASS="envar" >$DVIPDFCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-DVIPDFFLAGS" ></A ><CODE CLASS="envar" >DVIPDFFLAGS</CODE ></DT ><DD ><P > General options passed to the TeX DVI file to PDF file converter. </P ></DD ><DT ><A NAME="cv-DVIPS" ></A ><CODE CLASS="envar" >DVIPS</CODE ></DT ><DD ><P > The TeX DVI file to PostScript converter. </P ></DD ><DT ><A NAME="cv-DVIPSFLAGS" ></A ><CODE CLASS="envar" >DVIPSFLAGS</CODE ></DT ><DD ><P > General options passed to the TeX DVI file to PostScript converter. </P ></DD ><DT ><A NAME="cv-ENV" ></A ><CODE CLASS="envar" >ENV</CODE ></DT ><DD ><P > A dictionary of environment variables to use when invoking commands. When <CODE CLASS="envar" >$ENV</CODE > is used in a command all list values will be joined using the path separator and any other non-string values will simply be coerced to a string. Note that, by default, <SPAN CLASS="application" >scons</SPAN > does <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > propagate the environment in force when you execute <SPAN CLASS="application" >scons</SPAN > to the commands used to build target files. This is so that builds will be guaranteed repeatable regardless of the environment variables set at the time <SPAN CLASS="application" >scons</SPAN > is invoked.</P ><P >If you want to propagate your environment variables to the commands executed to build target files, you must do so explicitly: </P ><PRE CLASS="programlisting" > import os env = Environment(ENV = os.environ) </PRE ><P > Note that you can choose only to propagate certain environment variables. A common example is the system <CODE CLASS="envar" >PATH</CODE > environment variable, so that <SPAN CLASS="application" >scons</SPAN > uses the same utilities as the invoking shell (or other process): </P ><PRE CLASS="programlisting" > import os env = Environment(ENV = {'PATH' : os.environ['PATH']}) </PRE ></DD ><DT ><A NAME="cv-ESCAPE" ></A ><CODE CLASS="envar" >ESCAPE</CODE ></DT ><DD ><P > A function that will be called to escape shell special characters in command lines. The function should take one argument: the command line string to escape; and should return the escaped command line. </P ></DD ><DT ><A NAME="cv-F77" ></A ><CODE CLASS="envar" >F77</CODE ></DT ><DD ><P > The Fortran 77 compiler. You should normally set the <A HREF="#cv-FORTRAN" ><CODE CLASS="envar" >$FORTRAN</CODE ></A > variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set <A HREF="#cv-F77" ><CODE CLASS="envar" >$F77</CODE ></A > if you need to use a specific compiler or compiler version for Fortran 77 files. </P ></DD ><DT ><A NAME="cv-F77COM" ></A ><CODE CLASS="envar" >F77COM</CODE ></DT ><DD ><P > The command line used to compile a Fortran 77 source file to an object file. You only need to set <A HREF="#cv-F77COM" ><CODE CLASS="envar" >$F77COM</CODE ></A > if you need to use a specific command line for Fortran 77 files. You should normally set the <A HREF="#cv-FORTRANCOM" ><CODE CLASS="envar" >$FORTRANCOM</CODE ></A > variable, which specifies the default command line for all Fortran versions. </P ></DD ><DT ><A NAME="cv-F77COMSTR" ></A ><CODE CLASS="envar" >F77COMSTR</CODE ></DT ><DD ><P > The string displayed when a Fortran 77 source file is compiled to an object file. If this is not set, then <A HREF="#cv-F77COM" ><CODE CLASS="envar" >$F77COM</CODE ></A > or <A HREF="#cv-FORTRANCOM" ><CODE CLASS="envar" >$FORTRANCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-F77FILESUFFIXES" ></A ><CODE CLASS="envar" >F77FILESUFFIXES</CODE ></DT ><DD ><P > The list of file extensions for which the F77 dialect will be used. By default, this is ['.f77'] </P ></DD ><DT ><A NAME="cv-F77FLAGS" ></A ><CODE CLASS="envar" >F77FLAGS</CODE ></DT ><DD ><P > General user-specified options that are passed to the Fortran 77 compiler. Note that this variable does <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > contain <CODE CLASS="option" >-I</CODE > (or similar) include search path options that scons generates automatically from <A HREF="#cv-F77PATH" ><CODE CLASS="envar" >$F77PATH</CODE ></A >. See <A HREF="#cv-_F77INCFLAGS" ><CODE CLASS="envar" >$_F77INCFLAGS</CODE ></A > below, for the variable that expands to those options. You only need to set <A HREF="#cv-F77FLAGS" ><CODE CLASS="envar" >$F77FLAGS</CODE ></A > if you need to define specific user options for Fortran 77 files. You should normally set the <A HREF="#cv-FORTRANFLAGS" ><CODE CLASS="envar" >$FORTRANFLAGS</CODE ></A > variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions. </P ></DD ><DT ><A NAME="cv-_F77INCFLAGS" ></A ><CODE CLASS="envar" >_F77INCFLAGS</CODE ></DT ><DD ><P > An automatically-generated construction variable containing the Fortran 77 compiler command-line options for specifying directories to be searched for include files. The value of <A HREF="#cv-_F77INCFLAGS" ><CODE CLASS="envar" >$_F77INCFLAGS</CODE ></A > is created by appending <A HREF="#cv-INCPREFIX" ><CODE CLASS="envar" >$INCPREFIX</CODE ></A > and <A HREF="#cv-INCSUFFIX" ><CODE CLASS="envar" >$INCSUFFIX</CODE ></A > to the beginning and end of each directory in <A HREF="#cv-F77PATH" ><CODE CLASS="envar" >$F77PATH</CODE ></A >. </P ></DD ><DT ><A NAME="cv-F77PATH" ></A ><CODE CLASS="envar" >F77PATH</CODE ></DT ><DD ><P > The list of directories that the Fortran 77 compiler will search for include directories. The implicit dependency scanner will search these directories for include files. Don't explicitly put include directory arguments in <A HREF="#cv-F77FLAGS" ><CODE CLASS="envar" >$F77FLAGS</CODE ></A > because the result will be non-portable and the directories will not be searched by the dependency scanner. Note: directory names in <A HREF="#cv-F77PATH" ><CODE CLASS="envar" >$F77PATH</CODE ></A > will be looked-up relative to the SConscript directory when they are used in a command. To force <SPAN CLASS="application" >scons</SPAN > to look-up a directory relative to the root of the source tree use #: You only need to set <A HREF="#cv-F77PATH" ><CODE CLASS="envar" >$F77PATH</CODE ></A > if you need to define a specific include path for Fortran 77 files. You should normally set the <A HREF="#cv-FORTRANPATH" ><CODE CLASS="envar" >$FORTRANPATH</CODE ></A > variable, which specifies the include path for the default Fortran compiler for all Fortran versions. </P ><PRE CLASS="programlisting" > env = Environment(F77PATH='#/include') </PRE ><P > The directory look-up can also be forced using the <CODE CLASS="function" >Dir</CODE >() function: </P ><PRE CLASS="programlisting" > include = Dir('include') env = Environment(F77PATH=include) </PRE ><P > The directory list will be added to command lines through the automatically-generated <A HREF="#cv-_F77INCFLAGS" ><CODE CLASS="envar" >$_F77INCFLAGS</CODE ></A > construction variable, which is constructed by appending the values of the <A HREF="#cv-INCPREFIX" ><CODE CLASS="envar" >$INCPREFIX</CODE ></A > and <A HREF="#cv-INCSUFFIX" ><CODE CLASS="envar" >$INCSUFFIX</CODE ></A > construction variables to the beginning and end of each directory in <A HREF="#cv-F77PATH" ><CODE CLASS="envar" >$F77PATH</CODE ></A >. Any command lines you define that need the F77PATH directory list should include <A HREF="#cv-_F77INCFLAGS" ><CODE CLASS="envar" >$_F77INCFLAGS</CODE ></A >: </P ><PRE CLASS="programlisting" > env = Environment(F77COM="my_compiler $_F77INCFLAGS -c -o $TARGET $SOURCE") </PRE ></DD ><DT ><A NAME="cv-F77PPCOM" ></A ><CODE CLASS="envar" >F77PPCOM</CODE ></DT ><DD ><P > The command line used to compile a Fortran 77 source file to an object file after first running the file through the C preprocessor. Any options specified in the <A HREF="#cv-F77FLAGS" ><CODE CLASS="envar" >$F77FLAGS</CODE ></A > and <A HREF="#cv-CPPFLAGS" ><CODE CLASS="envar" >$CPPFLAGS</CODE ></A > construction variables are included on this command line. You only need to set <A HREF="#cv-F77PPCOM" ><CODE CLASS="envar" >$F77PPCOM</CODE ></A > if you need to use a specific C-preprocessor command line for Fortran 77 files. You should normally set the <A HREF="#cv-FORTRANPPCOM" ><CODE CLASS="envar" >$FORTRANPPCOM</CODE ></A > variable, which specifies the default C-preprocessor command line for all Fortran versions. </P ></DD ><DT ><A NAME="cv-F77PPCOMSTR" ></A ><CODE CLASS="envar" >F77PPCOMSTR</CODE ></DT ><DD ><P > The string displayed when a Fortran 77 source file is compiled to an object file after first running the file through the C preprocessor. If this is not set, then <A HREF="#cv-F77PPCOM" ><CODE CLASS="envar" >$F77PPCOM</CODE ></A > or <A HREF="#cv-FORTRANPPCOM" ><CODE CLASS="envar" >$FORTRANPPCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-F77PPFILESUFFIXES" ></A ><CODE CLASS="envar" >F77PPFILESUFFIXES</CODE ></DT ><DD ><P > The list of file extensions for which the compilation + preprocessor pass for F77 dialect will be used. By default, this is empty </P ></DD ><DT ><A NAME="cv-F90" ></A ><CODE CLASS="envar" >F90</CODE ></DT ><DD ><P > The Fortran 90 compiler. You should normally set the <A HREF="#cv-FORTRAN" ><CODE CLASS="envar" >$FORTRAN</CODE ></A > variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set <A HREF="#cv-F90" ><CODE CLASS="envar" >$F90</CODE ></A > if you need to use a specific compiler or compiler version for Fortran 90 files. </P ></DD ><DT ><A NAME="cv-F90COM" ></A ><CODE CLASS="envar" >F90COM</CODE ></DT ><DD ><P > The command line used to compile a Fortran 90 source file to an object file. You only need to set <A HREF="#cv-F90COM" ><CODE CLASS="envar" >$F90COM</CODE ></A > if you need to use a specific command line for Fortran 90 files. You should normally set the <A HREF="#cv-FORTRANCOM" ><CODE CLASS="envar" >$FORTRANCOM</CODE ></A > variable, which specifies the default command line for all Fortran versions. </P ></DD ><DT ><A NAME="cv-F90COMSTR" ></A ><CODE CLASS="envar" >F90COMSTR</CODE ></DT ><DD ><P > The string displayed when a Fortran 90 source file is compiled to an object file. If this is not set, then <A HREF="#cv-F90COM" ><CODE CLASS="envar" >$F90COM</CODE ></A > or <A HREF="#cv-FORTRANCOM" ><CODE CLASS="envar" >$FORTRANCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-F90FILESUFFIXES" ></A ><CODE CLASS="envar" >F90FILESUFFIXES</CODE ></DT ><DD ><P > The list of file extensions for which the F90 dialect will be used. By default, this is ['.f90'] </P ></DD ><DT ><A NAME="cv-F90FLAGS" ></A ><CODE CLASS="envar" >F90FLAGS</CODE ></DT ><DD ><P > General user-specified options that are passed to the Fortran 90 compiler. Note that this variable does <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > contain <CODE CLASS="option" >-I</CODE > (or similar) include search path options that scons generates automatically from <A HREF="#cv-F90PATH" ><CODE CLASS="envar" >$F90PATH</CODE ></A >. See <A HREF="#cv-_F90INCFLAGS" ><CODE CLASS="envar" >$_F90INCFLAGS</CODE ></A > below, for the variable that expands to those options. You only need to set <A HREF="#cv-F90FLAGS" ><CODE CLASS="envar" >$F90FLAGS</CODE ></A > if you need to define specific user options for Fortran 90 files. You should normally set the <A HREF="#cv-FORTRANFLAGS" ><CODE CLASS="envar" >$FORTRANFLAGS</CODE ></A > variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions. </P ></DD ><DT ><A NAME="cv-_F90INCFLAGS" ></A ><CODE CLASS="envar" >_F90INCFLAGS</CODE ></DT ><DD ><P > An automatically-generated construction variable containing the Fortran 90 compiler command-line options for specifying directories to be searched for include files. The value of <A HREF="#cv-_F90INCFLAGS" ><CODE CLASS="envar" >$_F90INCFLAGS</CODE ></A > is created by appending <A HREF="#cv-INCPREFIX" ><CODE CLASS="envar" >$INCPREFIX</CODE ></A > and <A HREF="#cv-INCSUFFIX" ><CODE CLASS="envar" >$INCSUFFIX</CODE ></A > to the beginning and end of each directory in <A HREF="#cv-F90PATH" ><CODE CLASS="envar" >$F90PATH</CODE ></A >. </P ></DD ><DT ><A NAME="cv-F90PATH" ></A ><CODE CLASS="envar" >F90PATH</CODE ></DT ><DD ><P > The list of directories that the Fortran 90 compiler will search for include directories. The implicit dependency scanner will search these directories for include files. Don't explicitly put include directory arguments in <A HREF="#cv-F90FLAGS" ><CODE CLASS="envar" >$F90FLAGS</CODE ></A > because the result will be non-portable and the directories will not be searched by the dependency scanner. Note: directory names in <A HREF="#cv-F90PATH" ><CODE CLASS="envar" >$F90PATH</CODE ></A > will be looked-up relative to the SConscript directory when they are used in a command. To force <SPAN CLASS="application" >scons</SPAN > to look-up a directory relative to the root of the source tree use #: You only need to set <A HREF="#cv-F90PATH" ><CODE CLASS="envar" >$F90PATH</CODE ></A > if you need to define a specific include path for Fortran 90 files. You should normally set the <A HREF="#cv-FORTRANPATH" ><CODE CLASS="envar" >$FORTRANPATH</CODE ></A > variable, which specifies the include path for the default Fortran compiler for all Fortran versions. </P ><PRE CLASS="programlisting" > env = Environment(F90PATH='#/include') </PRE ><P > The directory look-up can also be forced using the <CODE CLASS="function" >Dir</CODE >() function: </P ><PRE CLASS="programlisting" > include = Dir('include') env = Environment(F90PATH=include) </PRE ><P > The directory list will be added to command lines through the automatically-generated <A HREF="#cv-_F90INCFLAGS" ><CODE CLASS="envar" >$_F90INCFLAGS</CODE ></A > construction variable, which is constructed by appending the values of the <A HREF="#cv-INCPREFIX" ><CODE CLASS="envar" >$INCPREFIX</CODE ></A > and <A HREF="#cv-INCSUFFIX" ><CODE CLASS="envar" >$INCSUFFIX</CODE ></A > construction variables to the beginning and end of each directory in <A HREF="#cv-F90PATH" ><CODE CLASS="envar" >$F90PATH</CODE ></A >. Any command lines you define that need the F90PATH directory list should include <A HREF="#cv-_F90INCFLAGS" ><CODE CLASS="envar" >$_F90INCFLAGS</CODE ></A >: </P ><PRE CLASS="programlisting" > env = Environment(F90COM="my_compiler $_F90INCFLAGS -c -o $TARGET $SOURCE") </PRE ></DD ><DT ><A NAME="cv-F90PPCOM" ></A ><CODE CLASS="envar" >F90PPCOM</CODE ></DT ><DD ><P > The command line used to compile a Fortran 90 source file to an object file after first running the file through the C preprocessor. Any options specified in the <A HREF="#cv-F90FLAGS" ><CODE CLASS="envar" >$F90FLAGS</CODE ></A > and <A HREF="#cv-CPPFLAGS" ><CODE CLASS="envar" >$CPPFLAGS</CODE ></A > construction variables are included on this command line. You only need to set <A HREF="#cv-F90PPCOM" ><CODE CLASS="envar" >$F90PPCOM</CODE ></A > if you need to use a specific C-preprocessor command line for Fortran 90 files. You should normally set the <A HREF="#cv-FORTRANPPCOM" ><CODE CLASS="envar" >$FORTRANPPCOM</CODE ></A > variable, which specifies the default C-preprocessor command line for all Fortran versions. </P ></DD ><DT ><A NAME="cv-F90PPCOMSTR" ></A ><CODE CLASS="envar" >F90PPCOMSTR</CODE ></DT ><DD ><P > The string displayed when a Fortran 90 source file is compiled after first running the file through the C preprocessor. If this is not set, then <A HREF="#cv-F90PPCOM" ><CODE CLASS="envar" >$F90PPCOM</CODE ></A > or <A HREF="#cv-FORTRANPPCOM" ><CODE CLASS="envar" >$FORTRANPPCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-F90PPFILESUFFIXES" ></A ><CODE CLASS="envar" >F90PPFILESUFFIXES</CODE ></DT ><DD ><P > The list of file extensions for which the compilation + preprocessor pass for F90 dialect will be used. By default, this is empty </P ></DD ><DT ><A NAME="cv-F95" ></A ><CODE CLASS="envar" >F95</CODE ></DT ><DD ><P > The Fortran 95 compiler. You should normally set the <A HREF="#cv-FORTRAN" ><CODE CLASS="envar" >$FORTRAN</CODE ></A > variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set <A HREF="#cv-F95" ><CODE CLASS="envar" >$F95</CODE ></A > if you need to use a specific compiler or compiler version for Fortran 95 files. </P ></DD ><DT ><A NAME="cv-F95COM" ></A ><CODE CLASS="envar" >F95COM</CODE ></DT ><DD ><P > The command line used to compile a Fortran 95 source file to an object file. You only need to set <A HREF="#cv-F95COM" ><CODE CLASS="envar" >$F95COM</CODE ></A > if you need to use a specific command line for Fortran 95 files. You should normally set the <A HREF="#cv-FORTRANCOM" ><CODE CLASS="envar" >$FORTRANCOM</CODE ></A > variable, which specifies the default command line for all Fortran versions. </P ></DD ><DT ><A NAME="cv-F95COMSTR" ></A ><CODE CLASS="envar" >F95COMSTR</CODE ></DT ><DD ><P > The string displayed when a Fortran 95 source file is compiled to an object file. If this is not set, then <A HREF="#cv-F95COM" ><CODE CLASS="envar" >$F95COM</CODE ></A > or <A HREF="#cv-FORTRANCOM" ><CODE CLASS="envar" >$FORTRANCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-F95FILESUFFIXES" ></A ><CODE CLASS="envar" >F95FILESUFFIXES</CODE ></DT ><DD ><P > The list of file extensions for which the F95 dialect will be used. By default, this is ['.f95'] </P ></DD ><DT ><A NAME="cv-F95FLAGS" ></A ><CODE CLASS="envar" >F95FLAGS</CODE ></DT ><DD ><P > General user-specified options that are passed to the Fortran 95 compiler. Note that this variable does <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > contain <CODE CLASS="option" >-I</CODE > (or similar) include search path options that scons generates automatically from <A HREF="#cv-F95PATH" ><CODE CLASS="envar" >$F95PATH</CODE ></A >. See <A HREF="#cv-_F95INCFLAGS" ><CODE CLASS="envar" >$_F95INCFLAGS</CODE ></A > below, for the variable that expands to those options. You only need to set <A HREF="#cv-F95FLAGS" ><CODE CLASS="envar" >$F95FLAGS</CODE ></A > if you need to define specific user options for Fortran 95 files. You should normally set the <A HREF="#cv-FORTRANFLAGS" ><CODE CLASS="envar" >$FORTRANFLAGS</CODE ></A > variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions. </P ></DD ><DT ><A NAME="cv-_F95INCFLAGS" ></A ><CODE CLASS="envar" >_F95INCFLAGS</CODE ></DT ><DD ><P > An automatically-generated construction variable containing the Fortran 95 compiler command-line options for specifying directories to be searched for include files. The value of <A HREF="#cv-_F95INCFLAGS" ><CODE CLASS="envar" >$_F95INCFLAGS</CODE ></A > is created by appending <A HREF="#cv-INCPREFIX" ><CODE CLASS="envar" >$INCPREFIX</CODE ></A > and <A HREF="#cv-INCSUFFIX" ><CODE CLASS="envar" >$INCSUFFIX</CODE ></A > to the beginning and end of each directory in <A HREF="#cv-F95PATH" ><CODE CLASS="envar" >$F95PATH</CODE ></A >. </P ></DD ><DT ><A NAME="cv-F95PATH" ></A ><CODE CLASS="envar" >F95PATH</CODE ></DT ><DD ><P > The list of directories that the Fortran 95 compiler will search for include directories. The implicit dependency scanner will search these directories for include files. Don't explicitly put include directory arguments in <A HREF="#cv-F95FLAGS" ><CODE CLASS="envar" >$F95FLAGS</CODE ></A > because the result will be non-portable and the directories will not be searched by the dependency scanner. Note: directory names in <A HREF="#cv-F95PATH" ><CODE CLASS="envar" >$F95PATH</CODE ></A > will be looked-up relative to the SConscript directory when they are used in a command. To force <SPAN CLASS="application" >scons</SPAN > to look-up a directory relative to the root of the source tree use #: You only need to set <A HREF="#cv-F95PATH" ><CODE CLASS="envar" >$F95PATH</CODE ></A > if you need to define a specific include path for Fortran 95 files. You should normally set the <A HREF="#cv-FORTRANPATH" ><CODE CLASS="envar" >$FORTRANPATH</CODE ></A > variable, which specifies the include path for the default Fortran compiler for all Fortran versions. </P ><PRE CLASS="programlisting" > env = Environment(F95PATH='#/include') </PRE ><P > The directory look-up can also be forced using the <CODE CLASS="function" >Dir</CODE >() function: </P ><PRE CLASS="programlisting" > include = Dir('include') env = Environment(F95PATH=include) </PRE ><P > The directory list will be added to command lines through the automatically-generated <A HREF="#cv-_F95INCFLAGS" ><CODE CLASS="envar" >$_F95INCFLAGS</CODE ></A > construction variable, which is constructed by appending the values of the <A HREF="#cv-INCPREFIX" ><CODE CLASS="envar" >$INCPREFIX</CODE ></A > and <A HREF="#cv-INCSUFFIX" ><CODE CLASS="envar" >$INCSUFFIX</CODE ></A > construction variables to the beginning and end of each directory in <A HREF="#cv-F95PATH" ><CODE CLASS="envar" >$F95PATH</CODE ></A >. Any command lines you define that need the F95PATH directory list should include <A HREF="#cv-_F95INCFLAGS" ><CODE CLASS="envar" >$_F95INCFLAGS</CODE ></A >: </P ><PRE CLASS="programlisting" > env = Environment(F95COM="my_compiler $_F95INCFLAGS -c -o $TARGET $SOURCE") </PRE ></DD ><DT ><A NAME="cv-F95PPCOM" ></A ><CODE CLASS="envar" >F95PPCOM</CODE ></DT ><DD ><P > The command line used to compile a Fortran 95 source file to an object file after first running the file through the C preprocessor. Any options specified in the <A HREF="#cv-F95FLAGS" ><CODE CLASS="envar" >$F95FLAGS</CODE ></A > and <A HREF="#cv-CPPFLAGS" ><CODE CLASS="envar" >$CPPFLAGS</CODE ></A > construction variables are included on this command line. You only need to set <A HREF="#cv-F95PPCOM" ><CODE CLASS="envar" >$F95PPCOM</CODE ></A > if you need to use a specific C-preprocessor command line for Fortran 95 files. You should normally set the <A HREF="#cv-FORTRANPPCOM" ><CODE CLASS="envar" >$FORTRANPPCOM</CODE ></A > variable, which specifies the default C-preprocessor command line for all Fortran versions. </P ></DD ><DT ><A NAME="cv-F95PPCOMSTR" ></A ><CODE CLASS="envar" >F95PPCOMSTR</CODE ></DT ><DD ><P > The string displayed when a Fortran 95 source file is compiled to an object file after first running the file through the C preprocessor. If this is not set, then <A HREF="#cv-F95PPCOM" ><CODE CLASS="envar" >$F95PPCOM</CODE ></A > or <A HREF="#cv-FORTRANPPCOM" ><CODE CLASS="envar" >$FORTRANPPCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-F95PPFILESUFFIXES" ></A ><CODE CLASS="envar" >F95PPFILESUFFIXES</CODE ></DT ><DD ><P > The list of file extensions for which the compilation + preprocessor pass for F95 dialect will be used. By default, this is empty </P ></DD ><DT ><A NAME="cv-File" ></A ><CODE CLASS="envar" >File</CODE ></DT ><DD ><P > A function that converts a string into a File instance relative to the target being built. </P ></DD ><DT ><A NAME="cv-FORTRAN" ></A ><CODE CLASS="envar" >FORTRAN</CODE ></DT ><DD ><P > The default Fortran compiler for all versions of Fortran. </P ></DD ><DT ><A NAME="cv-FORTRANCOM" ></A ><CODE CLASS="envar" >FORTRANCOM</CODE ></DT ><DD ><P > The command line used to compile a Fortran source file to an object file. By default, any options specified in the <A HREF="#cv-FORTRANFLAGS" ><CODE CLASS="envar" >$FORTRANFLAGS</CODE ></A >, <A HREF="#cv-CPPFLAGS" ><CODE CLASS="envar" >$CPPFLAGS</CODE ></A >, <A HREF="#cv-_CPPDEFFLAGS" ><CODE CLASS="envar" >$_CPPDEFFLAGS</CODE ></A >, <A HREF="#cv-_FORTRANMODFLAG" ><CODE CLASS="envar" >$_FORTRANMODFLAG</CODE ></A >, and <A HREF="#cv-_FORTRANINCFLAGS" ><CODE CLASS="envar" >$_FORTRANINCFLAGS</CODE ></A > construction variables are included on this command line. </P ></DD ><DT ><A NAME="cv-FORTRANCOMSTR" ></A ><CODE CLASS="envar" >FORTRANCOMSTR</CODE ></DT ><DD ><P > The string displayed when a Fortran source file is compiled to an object file. If this is not set, then <A HREF="#cv-FORTRANCOM" ><CODE CLASS="envar" >$FORTRANCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-FORTRANFILESUFFIXES" ></A ><CODE CLASS="envar" >FORTRANFILESUFFIXES</CODE ></DT ><DD ><P > The list of file extensions for which the FORTRAN dialect will be used. By default, this is ['.f', '.for', '.ftn'] </P ></DD ><DT ><A NAME="cv-FORTRANFLAGS" ></A ><CODE CLASS="envar" >FORTRANFLAGS</CODE ></DT ><DD ><P > General user-specified options that are passed to the Fortran compiler. Note that this variable does <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > contain <CODE CLASS="option" >-I</CODE > (or similar) include or module search path options that scons generates automatically from <A HREF="#cv-FORTRANPATH" ><CODE CLASS="envar" >$FORTRANPATH</CODE ></A >. See <A HREF="#cv-_FORTRANINCFLAGS" ><CODE CLASS="envar" >$_FORTRANINCFLAGS</CODE ></A > and <A HREF="#cv-_FORTRANMODFLAG" ><CODE CLASS="envar" >$_FORTRANMODFLAG</CODE ></A >, below, for the variables that expand those options. </P ></DD ><DT ><A NAME="cv-_FORTRANINCFLAGS" ></A ><CODE CLASS="envar" >_FORTRANINCFLAGS</CODE ></DT ><DD ><P > An automatically-generated construction variable containing the Fortran compiler command-line options for specifying directories to be searched for include files and module files. The value of <A HREF="#cv-_FORTRANINCFLAGS" ><CODE CLASS="envar" >$_FORTRANINCFLAGS</CODE ></A > is created by prepending/appending <A HREF="#cv-INCPREFIX" ><CODE CLASS="envar" >$INCPREFIX</CODE ></A > and <A HREF="#cv-INCSUFFIX" ><CODE CLASS="envar" >$INCSUFFIX</CODE ></A > to the beginning and end of each directory in <A HREF="#cv-FORTRANPATH" ><CODE CLASS="envar" >$FORTRANPATH</CODE ></A >. </P ></DD ><DT ><A NAME="cv-FORTRANMODDIR" ></A ><CODE CLASS="envar" >FORTRANMODDIR</CODE ></DT ><DD ><P > Directory location where the Fortran compiler should place any module files it generates. This variable is empty, by default. Some Fortran compilers will internally append this directory in the search path for module files, as well. </P ></DD ><DT ><A NAME="cv-FORTRANMODDIRPREFIX" ></A ><CODE CLASS="envar" >FORTRANMODDIRPREFIX</CODE ></DT ><DD ><P > The prefix used to specify a module directory on the Fortran compiler command line. This will be appended to the beginning of the directory in the <A HREF="#cv-FORTRANMODDIR" ><CODE CLASS="envar" >$FORTRANMODDIR</CODE ></A > construction variables when the <A HREF="#cv-_FORTRANMODFLAG" ><CODE CLASS="envar" >$_FORTRANMODFLAG</CODE ></A > variables is automatically generated. </P ></DD ><DT ><A NAME="cv-FORTRANMODDIRSUFFIX" ></A ><CODE CLASS="envar" >FORTRANMODDIRSUFFIX</CODE ></DT ><DD ><P > The suffix used to specify a module directory on the Fortran compiler command line. This will be appended to the beginning of the directory in the <A HREF="#cv-FORTRANMODDIR" ><CODE CLASS="envar" >$FORTRANMODDIR</CODE ></A > construction variables when the <A HREF="#cv-_FORTRANMODFLAG" ><CODE CLASS="envar" >$_FORTRANMODFLAG</CODE ></A > variables is automatically generated. </P ></DD ><DT ><A NAME="cv-_FORTRANMODFLAG" ></A ><CODE CLASS="envar" >_FORTRANMODFLAG</CODE ></DT ><DD ><P > An automatically-generated construction variable containing the Fortran compiler command-line option for specifying the directory location where the Fortran compiler should place any module files that happen to get generated during compilation. The value of <A HREF="#cv-_FORTRANMODFLAG" ><CODE CLASS="envar" >$_FORTRANMODFLAG</CODE ></A > is created by prepending/appending <A HREF="#cv-FORTRANMODDIRPREFIX" ><CODE CLASS="envar" >$FORTRANMODDIRPREFIX</CODE ></A > and <A HREF="#cv-FORTRANMODDIRSUFFIX" ><CODE CLASS="envar" >$FORTRANMODDIRSUFFIX</CODE ></A > to the beginning and end of the directory in <A HREF="#cv-FORTRANMODDIR" ><CODE CLASS="envar" >$FORTRANMODDIR</CODE ></A >. </P ></DD ><DT ><A NAME="cv-FORTRANMODPREFIX" ></A ><CODE CLASS="envar" >FORTRANMODPREFIX</CODE ></DT ><DD ><P > The module file prefix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the quasi-standard naming convention for module files of <TT CLASS="filename" >module_name.mod</TT >. As a result, this variable is left empty, by default. For situations in which the compiler does not necessarily follow the normal convention, the user may use this variable. Its value will be appended to every module file name as scons attempts to resolve dependencies. </P ></DD ><DT ><A NAME="cv-FORTRANMODSUFFIX" ></A ><CODE CLASS="envar" >FORTRANMODSUFFIX</CODE ></DT ><DD ><P > The module file suffix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the quasi-standard naming convention for module files of <TT CLASS="filename" >module_name.mod</TT >. As a result, this variable is set to ".mod", by default. For situations in which the compiler does not necessarily follow the normal convention, the user may use this variable. Its value will be appended to every module file name as scons attempts to resolve dependencies. </P ></DD ><DT ><A NAME="cv-FORTRANPATH" ></A ><CODE CLASS="envar" >FORTRANPATH</CODE ></DT ><DD ><P > The list of directories that the Fortran compiler will search for include files and (for some compilers) module files. The Fortran implicit dependency scanner will search these directories for include files (but not module files since they are autogenerated and, as such, may not actually exist at the time the scan takes place). Don't explicitly put include directory arguments in FORTRANFLAGS because the result will be non-portable and the directories will not be searched by the dependency scanner. Note: directory names in FORTRANPATH will be looked-up relative to the SConscript directory when they are used in a command. To force <SPAN CLASS="application" >scons</SPAN > to look-up a directory relative to the root of the source tree use #: </P ><PRE CLASS="programlisting" > env = Environment(FORTRANPATH='#/include') </PRE ><P > The directory look-up can also be forced using the <CODE CLASS="function" >Dir</CODE >() function: </P ><PRE CLASS="programlisting" > include = Dir('include') env = Environment(FORTRANPATH=include) </PRE ><P > The directory list will be added to command lines through the automatically-generated <A HREF="#cv-_FORTRANINCFLAGS" ><CODE CLASS="envar" >$_FORTRANINCFLAGS</CODE ></A > construction variable, which is constructed by appending the values of the <A HREF="#cv-INCPREFIX" ><CODE CLASS="envar" >$INCPREFIX</CODE ></A > and <A HREF="#cv-INCSUFFIX" ><CODE CLASS="envar" >$INCSUFFIX</CODE ></A > construction variables to the beginning and end of each directory in <A HREF="#cv-FORTRANPATH" ><CODE CLASS="envar" >$FORTRANPATH</CODE ></A >. Any command lines you define that need the FORTRANPATH directory list should include <A HREF="#cv-_FORTRANINCFLAGS" ><CODE CLASS="envar" >$_FORTRANINCFLAGS</CODE ></A >: </P ><PRE CLASS="programlisting" > env = Environment(FORTRANCOM="my_compiler $_FORTRANINCFLAGS -c -o $TARGET $SOURCE") </PRE ></DD ><DT ><A NAME="cv-FORTRANPPCOM" ></A ><CODE CLASS="envar" >FORTRANPPCOM</CODE ></DT ><DD ><P > The command line used to compile a Fortran source file to an object file after first running the file through the C preprocessor. By default, any options specified in the <A HREF="#cv-FORTRANFLAGS" ><CODE CLASS="envar" >$FORTRANFLAGS</CODE ></A >, <A HREF="#cv-CPPFLAGS" ><CODE CLASS="envar" >$CPPFLAGS</CODE ></A >, <A HREF="#cv-_CPPDEFFLAGS" ><CODE CLASS="envar" >$_CPPDEFFLAGS</CODE ></A >, <A HREF="#cv-_FORTRANMODFLAG" ><CODE CLASS="envar" >$_FORTRANMODFLAG</CODE ></A >, and <A HREF="#cv-_FORTRANINCFLAGS" ><CODE CLASS="envar" >$_FORTRANINCFLAGS</CODE ></A > construction variables are included on this command line. </P ></DD ><DT ><A NAME="cv-FORTRANPPCOMSTR" ></A ><CODE CLASS="envar" >FORTRANPPCOMSTR</CODE ></DT ><DD ><P > The string displayed when a Fortran source file is compiled to an object file after first running the file throught the C preprocessor. If this is not set, then <A HREF="#cv-FORTRANPPCOM" ><CODE CLASS="envar" >$FORTRANPPCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-FORTRANPPFILESUFFIXES" ></A ><CODE CLASS="envar" >FORTRANPPFILESUFFIXES</CODE ></DT ><DD ><P > The list of file extensions for which the compilation + preprocessor pass for FORTRAN dialect will be used. By default, this is ['.fpp', '.FPP'] </P ></DD ><DT ><A NAME="cv-FORTRANSUFFIXES" ></A ><CODE CLASS="envar" >FORTRANSUFFIXES</CODE ></DT ><DD ><P > The list of suffixes of files that will be scanned for Fortran implicit dependencies (INCLUDE lines and USE statements). The default list is: </P ><PRE CLASS="programlisting" > [".f", ".F", ".for", ".FOR", ".ftn", ".FTN", ".fpp", ".FPP", ".f77", ".F77", ".f90", ".F90", ".f95", ".F95"] </PRE ></DD ><DT ><A NAME="cv-FRAMEWORKPATH" ></A ><CODE CLASS="envar" >FRAMEWORKPATH</CODE ></DT ><DD ><P > On Mac OS X with gcc, a list containing the paths to search for frameworks. Used by the compiler to find framework-style includes like #include <Fmwk/Header.h>. Used by the linker to find user-specified frameworks when linking (see <A HREF="#cv-FRAMEWORKS" ><CODE CLASS="envar" >$FRAMEWORKS</CODE ></A >). For example: </P ><PRE CLASS="programlisting" > env.AppendUnique(FRAMEWORKPATH='#myframeworkdir') </PRE ><P > will add </P ><PRE CLASS="programlisting" > ... -Fmyframeworkdir </PRE ><P > to the compiler and linker command lines. </P ></DD ><DT ><A NAME="cv-_FRAMEWORKPATH" ></A ><CODE CLASS="envar" >_FRAMEWORKPATH</CODE ></DT ><DD ><P > On Mac OS X with gcc, an automatically-generated construction variable containing the linker command-line options corresponding to <A HREF="#cv-FRAMEWORKPATH" ><CODE CLASS="envar" >$FRAMEWORKPATH</CODE ></A >. </P ></DD ><DT ><A NAME="cv-FRAMEWORKPATHPREFIX" ></A ><CODE CLASS="envar" >FRAMEWORKPATHPREFIX</CODE ></DT ><DD ><P > On Mac OS X with gcc, the prefix to be used for the FRAMEWORKPATH entries. (see <A HREF="#cv-FRAMEWORKPATH" ><CODE CLASS="envar" >$FRAMEWORKPATH</CODE ></A >). The default value is <CODE CLASS="option" >-F</CODE >. </P ></DD ><DT ><A NAME="cv-FRAMEWORKPREFIX" ></A ><CODE CLASS="envar" >FRAMEWORKPREFIX</CODE ></DT ><DD ><P > On Mac OS X with gcc, the prefix to be used for linking in frameworks (see <A HREF="#cv-FRAMEWORKS" ><CODE CLASS="envar" >$FRAMEWORKS</CODE ></A >). The default value is <CODE CLASS="option" >-framework</CODE >. </P ></DD ><DT ><A NAME="cv-_FRAMEWORKS" ></A ><CODE CLASS="envar" >_FRAMEWORKS</CODE ></DT ><DD ><P > On Mac OS X with gcc, an automatically-generated construction variable containing the linker command-line options for linking with FRAMEWORKS. </P ></DD ><DT ><A NAME="cv-FRAMEWORKS" ></A ><CODE CLASS="envar" >FRAMEWORKS</CODE ></DT ><DD ><P > On Mac OS X with gcc, a list of the framework names to be linked into a program or shared library or bundle. The default value is the empty list. For example: </P ><PRE CLASS="programlisting" > env.AppendUnique(FRAMEWORKS=Split('System Cocoa SystemConfiguration')) </PRE ><P > </P ></DD ><DT ><A NAME="cv-FRAMEWORKSFLAGS" ></A ><CODE CLASS="envar" >FRAMEWORKSFLAGS</CODE ></DT ><DD ><P > On Mac OS X with gcc, general user-supplied frameworks options to be added at the end of a command line building a loadable module. (This has been largely superceded by the <A HREF="#cv-FRAMEWORKPATH" ><CODE CLASS="envar" >$FRAMEWORKPATH</CODE ></A >, <A HREF="#cv-FRAMEWORKPATHPREFIX" ><CODE CLASS="envar" >$FRAMEWORKPATHPREFIX</CODE ></A >, <A HREF="#cv-FRAMEWORKPREFIX" ><CODE CLASS="envar" >$FRAMEWORKPREFIX</CODE ></A > and <A HREF="#cv-FRAMEWORKS" ><CODE CLASS="envar" >$FRAMEWORKS</CODE ></A > variables described above.) </P ></DD ><DT ><A NAME="cv-GS" ></A ><CODE CLASS="envar" >GS</CODE ></DT ><DD ><P > The Ghostscript program used to convert PostScript to PDF files. </P ></DD ><DT ><A NAME="cv-GSCOM" ></A ><CODE CLASS="envar" >GSCOM</CODE ></DT ><DD ><P > The Ghostscript command line used to convert PostScript to PDF files. </P ></DD ><DT ><A NAME="cv-GSCOMSTR" ></A ><CODE CLASS="envar" >GSCOMSTR</CODE ></DT ><DD ><P > The string displayed when Ghostscript is used to convert a PostScript file to a PDF file. If this is not set, then <A HREF="#cv-GSCOM" ><CODE CLASS="envar" >$GSCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-GSFLAGS" ></A ><CODE CLASS="envar" >GSFLAGS</CODE ></DT ><DD ><P > General options passed to the Ghostscript program when converting PostScript to PDF files. </P ></DD ><DT ><A NAME="cv-IDLSUFFIXES" ></A ><CODE CLASS="envar" >IDLSUFFIXES</CODE ></DT ><DD ><P > The list of suffixes of files that will be scanned for IDL implicit dependencies (#include or import lines). The default list is: </P ><PRE CLASS="programlisting" > [".idl", ".IDL"] </PRE ></DD ><DT ><A NAME="cv-IMPLICIT_COMMAND_DEPENDENCIES" ></A ><CODE CLASS="envar" >IMPLICIT_COMMAND_DEPENDENCIES</CODE ></DT ><DD ><P > Controls whether or not SCons will add implicit dependencies for the commands executed to build targets.</P ><P >By default, SCons will add to each target an implicit dependency on the command represented by the first argument on any command line it executes. The specific file for the dependency is found by searching the <CODE CLASS="varname" >PATH</CODE > variable in the <CODE CLASS="varname" >ENV</CODE > environment used to execute the command.</P ><P >If the construction variable <CODE CLASS="envar" >$IMPLICIT_COMMAND_DEPENDENCIES</CODE > is set to a false value (<TT CLASS="literal" >None</TT >, <TT CLASS="literal" >False</TT >, <TT CLASS="literal" >0</TT >, etc.), then the implicit dependency will not be added to the targets built with that construction environment. </P ><PRE CLASS="programlisting" > env = Environment(IMPLICIT_COMMAND_DEPENDENCIES = 0) </PRE ></DD ><DT ><A NAME="cv-INCPREFIX" ></A ><CODE CLASS="envar" >INCPREFIX</CODE ></DT ><DD ><P > The prefix used to specify an include directory on the C compiler command line. This will be appended to the beginning of each directory in the <CODE CLASS="envar" >$CPPPATH</CODE > and <CODE CLASS="envar" >$FORTRANPATH</CODE > construction variables when the <CODE CLASS="envar" >$_CPPINCFLAGS</CODE > and <CODE CLASS="envar" >$_FORTRANINCFLAGS</CODE > variables are automatically generated. </P ></DD ><DT ><A NAME="cv-INCSUFFIX" ></A ><CODE CLASS="envar" >INCSUFFIX</CODE ></DT ><DD ><P > The suffix used to specify an include directory on the C compiler command line. This will be appended to the end of each directory in the <CODE CLASS="envar" >$CPPPATH</CODE > and <CODE CLASS="envar" >$FORTRANPATH</CODE > construction variables when the <CODE CLASS="envar" >$_CPPINCFLAGS</CODE > and <CODE CLASS="envar" >$_FORTRANINCFLAGS</CODE > variables are automatically generated. </P ></DD ><DT ><A NAME="cv-INSTALL" ></A ><CODE CLASS="envar" >INSTALL</CODE ></DT ><DD ><P > A function to be called to install a file into a destination file name. The default function copies the file into the destination (and sets the destination file's mode and permission bits to match the source file's). The function takes the following arguments: </P ><PRE CLASS="programlisting" > def install(dest, source, env): </PRE ><P > <CODE CLASS="varname" >dest</CODE > is the path name of the destination file. <CODE CLASS="varname" >source</CODE > is the path name of the source file. <CODE CLASS="varname" >env</CODE > is the construction environment (a dictionary of construction values) in force for this file installation. </P ></DD ><DT ><A NAME="cv-INSTALLSTR" ></A ><CODE CLASS="envar" >INSTALLSTR</CODE ></DT ><DD ><P > The string displayed when a file is installed into a destination file name. The default is: </P ><PRE CLASS="programlisting" > Install file: "$SOURCE" as "$TARGET" </PRE ></DD ><DT ><A NAME="cv-INTEL_C_COMPILER_VERSION" ></A ><CODE CLASS="envar" >INTEL_C_COMPILER_VERSION</CODE ></DT ><DD ><P > Set by the "intelc" Tool to the major version number of the Intel C compiler selected for use. </P ></DD ><DT ><A NAME="cv-JAR" ></A ><CODE CLASS="envar" >JAR</CODE ></DT ><DD ><P > The Java archive tool. </P ></DD ><DT ><A NAME="cv-JARCHDIR" ></A ><CODE CLASS="envar" >JARCHDIR</CODE ></DT ><DD ><P > The directory to which the Java archive tool should change (using the <CODE CLASS="option" >-C</CODE > option). </P ></DD ><DT ><A NAME="cv-JARCOM" ></A ><CODE CLASS="envar" >JARCOM</CODE ></DT ><DD ><P > The command line used to call the Java archive tool. </P ></DD ><DT ><A NAME="cv-JARCOMSTR" ></A ><CODE CLASS="envar" >JARCOMSTR</CODE ></DT ><DD ><P > The string displayed when the Java archive tool is called If this is not set, then <CODE CLASS="envar" >$JARCOM</CODE > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(JARCOMSTR = "JARchiving $SOURCES into $TARGET") </PRE ></DD ><DT ><A NAME="cv-JARFLAGS" ></A ><CODE CLASS="envar" >JARFLAGS</CODE ></DT ><DD ><P > General options passed to the Java archive tool. By default this is set to <CODE CLASS="option" >cf</CODE > to create the necessary <B CLASS="command" >jar</B > file. </P ></DD ><DT ><A NAME="cv-JARSUFFIX" ></A ><CODE CLASS="envar" >JARSUFFIX</CODE ></DT ><DD ><P > The suffix for Java archives: <TT CLASS="filename" >.jar</TT > by default. </P ></DD ><DT ><A NAME="cv-JAVABOOTCLASSPATH" ></A ><CODE CLASS="envar" >JAVABOOTCLASSPATH</CODE ></DT ><DD ><P > Specifies the list of directories that will be added to the <SPAN CLASS="application" >javac</SPAN > command line via the <CODE CLASS="option" >-bootclasspath</CODE > option. The individual directory names will be separated by the operating system's path separate character (<TT CLASS="filename" >:</TT > on UNIX/Linux/POSIX, <TT CLASS="filename" >;</TT > on Windows). </P ></DD ><DT ><A NAME="cv-JAVAC" ></A ><CODE CLASS="envar" >JAVAC</CODE ></DT ><DD ><P > The Java compiler. </P ></DD ><DT ><A NAME="cv-JAVACCOM" ></A ><CODE CLASS="envar" >JAVACCOM</CODE ></DT ><DD ><P > The command line used to compile a directory tree containing Java source files to corresponding Java class files. Any options specified in the <A HREF="#cv-JAVACFLAGS" ><CODE CLASS="envar" >$JAVACFLAGS</CODE ></A > construction variable are included on this command line. </P ></DD ><DT ><A NAME="cv-JAVACCOMSTR" ></A ><CODE CLASS="envar" >JAVACCOMSTR</CODE ></DT ><DD ><P > The string displayed when compiling a directory tree of Java source files to corresponding Java class files. If this is not set, then <A HREF="#cv-JAVACCOM" ><CODE CLASS="envar" >$JAVACCOM</CODE ></A > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(JAVACCOMSTR = "Compiling class files $TARGETS from $SOURCES") </PRE ></DD ><DT ><A NAME="cv-JAVACFLAGS" ></A ><CODE CLASS="envar" >JAVACFLAGS</CODE ></DT ><DD ><P > General options that are passed to the Java compiler. </P ></DD ><DT ><A NAME="cv-JAVACLASSDIR" ></A ><CODE CLASS="envar" >JAVACLASSDIR</CODE ></DT ><DD ><P > The directory in which Java class files may be found. This is stripped from the beginning of any Java .class file names supplied to the <TT CLASS="literal" >JavaH</TT > builder. </P ></DD ><DT ><A NAME="cv-JAVACLASSPATH" ></A ><CODE CLASS="envar" >JAVACLASSPATH</CODE ></DT ><DD ><P > Specifies the list of directories that will be searched for Java <TT CLASS="filename" >.class</TT > file. The directories in this list will be added to the <SPAN CLASS="application" >javac</SPAN > and <SPAN CLASS="application" >javah</SPAN > command lines via the <CODE CLASS="option" >-classpath</CODE > option. The individual directory names will be separated by the operating system's path separate character (<TT CLASS="filename" >:</TT > on UNIX/Linux/POSIX, <TT CLASS="filename" >;</TT > on Windows).</P ><P >Note that this currently just adds the specified directory via the <CODE CLASS="option" >-classpath</CODE > option. <SPAN CLASS="application" >SCons</SPAN > does not currently search the <CODE CLASS="envar" >$JAVACLASSPATH</CODE > directories for dependency <TT CLASS="filename" >.class</TT > files. </P ></DD ><DT ><A NAME="cv-JAVACLASSSUFFIX" ></A ><CODE CLASS="envar" >JAVACLASSSUFFIX</CODE ></DT ><DD ><P > The suffix for Java class files; <TT CLASS="filename" >.class</TT > by default. </P ></DD ><DT ><A NAME="cv-JAVAH" ></A ><CODE CLASS="envar" >JAVAH</CODE ></DT ><DD ><P > The Java generator for C header and stub files. </P ></DD ><DT ><A NAME="cv-JAVAHCOM" ></A ><CODE CLASS="envar" >JAVAHCOM</CODE ></DT ><DD ><P > The command line used to generate C header and stub files from Java classes. Any options specified in the <A HREF="#cv-JAVAHFLAGS" ><CODE CLASS="envar" >$JAVAHFLAGS</CODE ></A > construction variable are included on this command line. </P ></DD ><DT ><A NAME="cv-JAVAHCOMSTR" ></A ><CODE CLASS="envar" >JAVAHCOMSTR</CODE ></DT ><DD ><P > The string displayed when C header and stub files are generated from Java classes. If this is not set, then <A HREF="#cv-JAVAHCOM" ><CODE CLASS="envar" >$JAVAHCOM</CODE ></A > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(JAVAHCOMSTR = "Generating header/stub file(s) $TARGETS from $SOURCES") </PRE ></DD ><DT ><A NAME="cv-JAVAHFLAGS" ></A ><CODE CLASS="envar" >JAVAHFLAGS</CODE ></DT ><DD ><P > General options passed to the C header and stub file generator for Java classes. </P ></DD ><DT ><A NAME="cv-JAVASOURCEPATH" ></A ><CODE CLASS="envar" >JAVASOURCEPATH</CODE ></DT ><DD ><P > Specifies the list of directories that will be searched for input <TT CLASS="filename" >.java</TT > file. The directories in this list will be added to the <SPAN CLASS="application" >javac</SPAN > command line via the <CODE CLASS="option" >-sourcepath</CODE > option. The individual directory names will be separated by the operating system's path separate character (<TT CLASS="filename" >:</TT > on UNIX/Linux/POSIX, <TT CLASS="filename" >;</TT > on Windows).</P ><P >Note that this currently just adds the specified directory via the <CODE CLASS="option" >-sourcepath</CODE > option. <SPAN CLASS="application" >SCons</SPAN > does not currently search the <CODE CLASS="envar" >$JAVASOURCEPATH</CODE > directories for dependency <TT CLASS="filename" >.java</TT > files. </P ></DD ><DT ><A NAME="cv-JAVASUFFIX" ></A ><CODE CLASS="envar" >JAVASUFFIX</CODE ></DT ><DD ><P > The suffix for Java files; <TT CLASS="filename" >.java</TT > by default. </P ></DD ><DT ><A NAME="cv-JAVAVERSION" ></A ><CODE CLASS="envar" >JAVAVERSION</CODE ></DT ><DD ><P > Specifies the Java version being used by the <CODE CLASS="function" >Java</CODE > builder. This is <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > currently used to select one version of the Java compiler vs. another. Instead, you should set this to specify the version of Java supported by your <SPAN CLASS="application" >javac</SPAN > compiler. The default is <TT CLASS="literal" >1.4</TT >.</P ><P >This is sometimes necessary because Java 1.5 changed the file names that are created for nested anonymous inner classes, which can cause a mismatch with the files that <SPAN CLASS="application" >SCons</SPAN > expects will be generated by the <SPAN CLASS="application" >javac</SPAN > compiler. Setting <CODE CLASS="envar" >$JAVAVERSION</CODE > to <TT CLASS="literal" >1.5</TT > (or <TT CLASS="literal" >1.6</TT >, as appropriate) can make <SPAN CLASS="application" >SCons</SPAN > realize that a Java 1.5 or 1.6 build is actually up to date. </P ></DD ><DT ><A NAME="cv-LATEX" ></A ><CODE CLASS="envar" >LATEX</CODE ></DT ><DD ><P > The LaTeX structured formatter and typesetter. </P ></DD ><DT ><A NAME="cv-LATEXCOM" ></A ><CODE CLASS="envar" >LATEXCOM</CODE ></DT ><DD ><P > The command line used to call the LaTeX structured formatter and typesetter. </P ></DD ><DT ><A NAME="cv-LATEXCOMSTR" ></A ><CODE CLASS="envar" >LATEXCOMSTR</CODE ></DT ><DD ><P > The string displayed when calling the LaTeX structured formatter and typesetter. If this is not set, then <A HREF="#cv-LATEXCOM" ><CODE CLASS="envar" >$LATEXCOM</CODE ></A > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(LATEXCOMSTR = "Building $TARGET from LaTeX input $SOURCES") </PRE ></DD ><DT ><A NAME="cv-LATEXFLAGS" ></A ><CODE CLASS="envar" >LATEXFLAGS</CODE ></DT ><DD ><P > General options passed to the LaTeX structured formatter and typesetter. </P ></DD ><DT ><A NAME="cv-LATEXRETRIES" ></A ><CODE CLASS="envar" >LATEXRETRIES</CODE ></DT ><DD ><P > The maximum number of times that LaTeX will be re-run if the <TT CLASS="filename" >.log</TT > generated by the <A HREF="#cv-LATEXCOM" ><CODE CLASS="envar" >$LATEXCOM</CODE ></A > command indicates that there are undefined references. The default is to try to resolve undefined references by re-running LaTeX up to three times. </P ></DD ><DT ><A NAME="cv-LATEXSUFFIXES" ></A ><CODE CLASS="envar" >LATEXSUFFIXES</CODE ></DT ><DD ><P > The list of suffixes of files that will be scanned for LaTeX implicit dependencies (<TT CLASS="literal" >\include</TT > or <TT CLASS="literal" >\import</TT > files). The default list is: </P ><PRE CLASS="programlisting" > [".tex", ".ltx", ".latex"] </PRE ></DD ><DT ><A NAME="cv-LDMODULE" ></A ><CODE CLASS="envar" >LDMODULE</CODE ></DT ><DD ><P > The linker for building loadable modules. By default, this is the same as <A HREF="#cv-SHLINK" ><CODE CLASS="envar" >$SHLINK</CODE ></A >. </P ></DD ><DT ><A NAME="cv-LDMODULECOM" ></A ><CODE CLASS="envar" >LDMODULECOM</CODE ></DT ><DD ><P > The command line for building loadable modules. On Mac OS X, this uses the <A HREF="#cv-LDMODULE" ><CODE CLASS="envar" >$LDMODULE</CODE ></A >, <A HREF="#cv-LDMODULEFLAGS" ><CODE CLASS="envar" >$LDMODULEFLAGS</CODE ></A > and <A HREF="#cv-FRAMEWORKSFLAGS" ><CODE CLASS="envar" >$FRAMEWORKSFLAGS</CODE ></A > variables. On other systems, this is the same as <A HREF="#cv-SHLINK" ><CODE CLASS="envar" >$SHLINK</CODE ></A >. </P ></DD ><DT ><A NAME="cv-LDMODULECOMSTR" ></A ><CODE CLASS="envar" >LDMODULECOMSTR</CODE ></DT ><DD ><P > The string displayed when building loadable modules. If this is not set, then <A HREF="#cv-LDMODULECOM" ><CODE CLASS="envar" >$LDMODULECOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-LDMODULEFLAGS" ></A ><CODE CLASS="envar" >LDMODULEFLAGS</CODE ></DT ><DD ><P > General user options passed to the linker for building loadable modules. </P ></DD ><DT ><A NAME="cv-LDMODULEPREFIX" ></A ><CODE CLASS="envar" >LDMODULEPREFIX</CODE ></DT ><DD ><P > The prefix used for loadable module file names. On Mac OS X, this is null; on other systems, this is the same as <A HREF="#cv-SHLIBPREFIX" ><CODE CLASS="envar" >$SHLIBPREFIX</CODE ></A >. </P ></DD ><DT ><A NAME="cv-LDMODULESUFFIX" ></A ><CODE CLASS="envar" >LDMODULESUFFIX</CODE ></DT ><DD ><P > The suffix used for loadable module file names. On Mac OS X, this is null; on other systems, this is the same as $SHLIBSUFFIX. </P ></DD ><DT ><A NAME="cv-LEX" ></A ><CODE CLASS="envar" >LEX</CODE ></DT ><DD ><P > The lexical analyzer generator. </P ></DD ><DT ><A NAME="cv-LEXCOM" ></A ><CODE CLASS="envar" >LEXCOM</CODE ></DT ><DD ><P > The command line used to call the lexical analyzer generator to generate a source file. </P ></DD ><DT ><A NAME="cv-LEXCOMSTR" ></A ><CODE CLASS="envar" >LEXCOMSTR</CODE ></DT ><DD ><P > The string displayed when generating a source file using the lexical analyzer generator. If this is not set, then <A HREF="#cv-LEXCOM" ><CODE CLASS="envar" >$LEXCOM</CODE ></A > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(LEXCOMSTR = "Lex'ing $TARGET from $SOURCES") </PRE ></DD ><DT ><A NAME="cv-LEXFLAGS" ></A ><CODE CLASS="envar" >LEXFLAGS</CODE ></DT ><DD ><P > General options passed to the lexical analyzer generator. </P ></DD ><DT ><A NAME="cv-_LIBDIRFLAGS" ></A ><CODE CLASS="envar" >_LIBDIRFLAGS</CODE ></DT ><DD ><P > An automatically-generated construction variable containing the linker command-line options for specifying directories to be searched for library. The value of <CODE CLASS="envar" >$_LIBDIRFLAGS</CODE > is created by appending <CODE CLASS="envar" >$LIBDIRPREFIX</CODE > and <CODE CLASS="envar" >$LIBDIRSUFFIX</CODE > to the beginning and end of each directory in <CODE CLASS="envar" >$LIBPATH</CODE >. </P ></DD ><DT ><A NAME="cv-LIBDIRPREFIX" ></A ><CODE CLASS="envar" >LIBDIRPREFIX</CODE ></DT ><DD ><P > The prefix used to specify a library directory on the linker command line. This will be appended to the beginning of each directory in the <CODE CLASS="envar" >$LIBPATH</CODE > construction variable when the <CODE CLASS="envar" >$_LIBDIRFLAGS</CODE > variable is automatically generated. </P ></DD ><DT ><A NAME="cv-LIBDIRSUFFIX" ></A ><CODE CLASS="envar" >LIBDIRSUFFIX</CODE ></DT ><DD ><P > The suffix used to specify a library directory on the linker command line. This will be appended to the end of each directory in the <CODE CLASS="envar" >$LIBPATH</CODE > construction variable when the <CODE CLASS="envar" >$_LIBDIRFLAGS</CODE > variable is automatically generated. </P ></DD ><DT ><A NAME="cv-_LIBFLAGS" ></A ><CODE CLASS="envar" >_LIBFLAGS</CODE ></DT ><DD ><P > An automatically-generated construction variable containing the linker command-line options for specifying libraries to be linked with the resulting target. The value of <CODE CLASS="envar" >$_LIBFLAGS</CODE > is created by appending <CODE CLASS="envar" >$LIBLINKPREFIX</CODE > and <CODE CLASS="envar" >$LIBLINKSUFFIX</CODE > to the beginning and end of each filename in <CODE CLASS="envar" >$LIBS</CODE >. </P ></DD ><DT ><A NAME="cv-LIBLINKPREFIX" ></A ><CODE CLASS="envar" >LIBLINKPREFIX</CODE ></DT ><DD ><P > The prefix used to specify a library to link on the linker command line. This will be appended to the beginning of each library in the <CODE CLASS="envar" >$LIBS</CODE > construction variable when the <CODE CLASS="envar" >$_LIBFLAGS</CODE > variable is automatically generated. </P ></DD ><DT ><A NAME="cv-LIBLINKSUFFIX" ></A ><CODE CLASS="envar" >LIBLINKSUFFIX</CODE ></DT ><DD ><P > The suffix used to specify a library to link on the linker command line. This will be appended to the end of each library in the <CODE CLASS="envar" >$LIBS</CODE > construction variable when the <CODE CLASS="envar" >$_LIBFLAGS</CODE > variable is automatically generated. </P ></DD ><DT ><A NAME="cv-LIBPATH" ></A ><CODE CLASS="envar" >LIBPATH</CODE ></DT ><DD ><P > The list of directories that will be searched for libraries. The implicit dependency scanner will search these directories for include files. Don't explicitly put include directory arguments in <CODE CLASS="envar" >$LINKFLAGS</CODE > or <CODE CLASS="envar" >$SHLINKFLAGS</CODE > because the result will be non-portable and the directories will not be searched by the dependency scanner. Note: directory names in LIBPATH will be looked-up relative to the SConscript directory when they are used in a command. To force <SPAN CLASS="application" >scons</SPAN > to look-up a directory relative to the root of the source tree use #: </P ><PRE CLASS="programlisting" > env = Environment(LIBPATH='#/libs') </PRE ><P > The directory look-up can also be forced using the <CODE CLASS="function" >Dir</CODE >() function: </P ><PRE CLASS="programlisting" > libs = Dir('libs') env = Environment(LIBPATH=libs) </PRE ><P > The directory list will be added to command lines through the automatically-generated <CODE CLASS="envar" >$_LIBDIRFLAGS</CODE > construction variable, which is constructed by appending the values of the <CODE CLASS="envar" >$LIBDIRPREFIX</CODE > and <CODE CLASS="envar" >$LIBDIRSUFFIX</CODE > construction variables to the beginning and end of each directory in <CODE CLASS="envar" >$LIBPATH</CODE >. Any command lines you define that need the LIBPATH directory list should include <CODE CLASS="envar" >$_LIBDIRFLAGS</CODE >: </P ><PRE CLASS="programlisting" > env = Environment(LINKCOM="my_linker $_LIBDIRFLAGS $_LIBFLAGS -o $TARGET $SOURCE") </PRE ></DD ><DT ><A NAME="cv-LIBPREFIX" ></A ><CODE CLASS="envar" >LIBPREFIX</CODE ></DT ><DD ><P > The prefix used for (static) library file names. A default value is set for each platform (posix, win32, os2, etc.), but the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries they create. </P ></DD ><DT ><A NAME="cv-LIBPREFIXES" ></A ><CODE CLASS="envar" >LIBPREFIXES</CODE ></DT ><DD ><P > A list of all legal prefixes for library file names. When searching for library dependencies, SCons will look for files with these prefixes, the base library name, and suffixes in the <CODE CLASS="envar" >$LIBSUFFIXES</CODE > list. </P ></DD ><DT ><A NAME="cv-LIBS" ></A ><CODE CLASS="envar" >LIBS</CODE ></DT ><DD ><P > A list of one or more libraries that will be linked with any executable programs created by this environment.</P ><P >The library list will be added to command lines through the automatically-generated <CODE CLASS="envar" >$_LIBFLAGS</CODE > construction variable, which is constructed by appending the values of the <CODE CLASS="envar" >$LIBLINKPREFIX</CODE > and <CODE CLASS="envar" >$LIBLINKSUFFIX</CODE > construction variables to the beginning and end of each filename in <CODE CLASS="envar" >$LIBS</CODE >. Any command lines you define that need the LIBS library list should include <CODE CLASS="envar" >$_LIBFLAGS</CODE >: </P ><PRE CLASS="programlisting" > env = Environment(LINKCOM="my_linker $_LIBDIRFLAGS $_LIBFLAGS -o $TARGET $SOURCE") </PRE ><P > If you add a File object to the <CODE CLASS="envar" >$LIBS</CODE > list, the name of that file will be added to <CODE CLASS="envar" >$_LIBFLAGS</CODE >, and thus the link line, as is, without <CODE CLASS="envar" >$LIBLINKPREFIX</CODE > or <CODE CLASS="envar" >$LIBLINKSUFFIX</CODE >. For example: </P ><PRE CLASS="programlisting" > env.Append(LIBS=File('/tmp/mylib.so')) </PRE ><P > In all cases, scons will add dependencies from the executable program to all the libraries in this list. </P ></DD ><DT ><A NAME="cv-LIBSUFFIX" ></A ><CODE CLASS="envar" >LIBSUFFIX</CODE ></DT ><DD ><P > The suffix used for (static) library file names. A default value is set for each platform (posix, win32, os2, etc.), but the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries they create. </P ></DD ><DT ><A NAME="cv-LIBSUFFIXES" ></A ><CODE CLASS="envar" >LIBSUFFIXES</CODE ></DT ><DD ><P > A list of all legal suffixes for library file names. When searching for library dependencies, SCons will look for files with prefixes, in the <CODE CLASS="envar" >$LIBPREFIXES</CODE > list, the base library name, and these suffixes. </P ></DD ><DT ><A NAME="cv-LICENSE" ></A ><CODE CLASS="envar" >LICENSE</CODE ></DT ><DD ><P > The abbreviated name of the license under which this project is released (gpl, lpgl, bsd etc.). See http://www.opensource.org/licenses/alphabetical for a list of license names. </P ></DD ><DT ><A NAME="cv-LINK" ></A ><CODE CLASS="envar" >LINK</CODE ></DT ><DD ><P > The linker. </P ></DD ><DT ><A NAME="cv-LINKCOM" ></A ><CODE CLASS="envar" >LINKCOM</CODE ></DT ><DD ><P > The command line used to link object files into an executable. </P ></DD ><DT ><A NAME="cv-LINKCOMSTR" ></A ><CODE CLASS="envar" >LINKCOMSTR</CODE ></DT ><DD ><P > The string displayed when object files are linked into an executable. If this is not set, then <A HREF="#cv-LINKCOM" ><CODE CLASS="envar" >$LINKCOM</CODE ></A > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(LINKCOMSTR = "Linking $TARGET") </PRE ></DD ><DT ><A NAME="cv-LINKFLAGS" ></A ><CODE CLASS="envar" >LINKFLAGS</CODE ></DT ><DD ><P > General user options passed to the linker. Note that this variable should <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > contain <CODE CLASS="option" >-l</CODE > (or similar) options for linking with the libraries listed in <A HREF="#cv-LIBS" ><CODE CLASS="envar" >$LIBS</CODE ></A >, nor <CODE CLASS="option" >-L</CODE > (or similar) library search path options that scons generates automatically from <A HREF="#cv-LIBPATH" ><CODE CLASS="envar" >$LIBPATH</CODE ></A >. See <A HREF="#cv-_LIBFLAGS" ><CODE CLASS="envar" >$_LIBFLAGS</CODE ></A > above, for the variable that expands to library-link options, and <A HREF="#cv-_LIBDIRFLAGS" ><CODE CLASS="envar" >$_LIBDIRFLAGS</CODE ></A > above, for the variable that expands to library search path options. </P ></DD ><DT ><A NAME="cv-M4" ></A ><CODE CLASS="envar" >M4</CODE ></DT ><DD ><P > The M4 macro preprocessor. </P ></DD ><DT ><A NAME="cv-M4COM" ></A ><CODE CLASS="envar" >M4COM</CODE ></DT ><DD ><P > The command line used to pass files through the M4 macro preprocessor. </P ></DD ><DT ><A NAME="cv-M4COMSTR" ></A ><CODE CLASS="envar" >M4COMSTR</CODE ></DT ><DD ><P > The string displayed when a file is passed through the M4 macro preprocessor. If this is not set, then <A HREF="#cv-M4COM" ><CODE CLASS="envar" >$M4COM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-M4FLAGS" ></A ><CODE CLASS="envar" >M4FLAGS</CODE ></DT ><DD ><P > General options passed to the M4 macro preprocessor. </P ></DD ><DT ><A NAME="cv-MAKEINDEX" ></A ><CODE CLASS="envar" >MAKEINDEX</CODE ></DT ><DD ><P > The makeindex generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter. </P ></DD ><DT ><A NAME="cv-MAKEINDEXCOM" ></A ><CODE CLASS="envar" >MAKEINDEXCOM</CODE ></DT ><DD ><P > The command line used to call the makeindex generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter. </P ></DD ><DT ><A NAME="cv-MAKEINDEXCOMSTR" ></A ><CODE CLASS="envar" >MAKEINDEXCOMSTR</CODE ></DT ><DD ><P > The string displayed when calling the makeindex generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter. If this is not set, then <A HREF="#cv-MAKEINDEXCOM" ><CODE CLASS="envar" >$MAKEINDEXCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-MAKEINDEXFLAGS" ></A ><CODE CLASS="envar" >MAKEINDEXFLAGS</CODE ></DT ><DD ><P > General options passed to the makeindex generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter. </P ></DD ><DT ><A NAME="cv-MAXLINELENGTH" ></A ><CODE CLASS="envar" >MAXLINELENGTH</CODE ></DT ><DD ><P > The maximum number of characters allowed on an external command line. On Win32 systems, link lines longer than this many characters are linked via a temporary file name. </P ></DD ><DT ><A NAME="cv-MIDL" ></A ><CODE CLASS="envar" >MIDL</CODE ></DT ><DD ><P > The Microsoft IDL compiler. </P ></DD ><DT ><A NAME="cv-MIDLCOM" ></A ><CODE CLASS="envar" >MIDLCOM</CODE ></DT ><DD ><P > The command line used to pass files to the Microsoft IDL compiler. </P ></DD ><DT ><A NAME="cv-MIDLCOMSTR" ></A ><CODE CLASS="envar" >MIDLCOMSTR</CODE ></DT ><DD ><P > The string displayed when the Microsoft IDL copmiler is called. If this is not set, then <A HREF="#cv-MIDLCOM" ><CODE CLASS="envar" >$MIDLCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-MIDLFLAGS" ></A ><CODE CLASS="envar" >MIDLFLAGS</CODE ></DT ><DD ><P > General options passed to the Microsoft IDL compiler. </P ></DD ><DT ><A NAME="cv-MSVS" ></A ><CODE CLASS="envar" >MSVS</CODE ></DT ><DD ><P > When the Microsoft Visual Studio tools are initialized, they set up this dictionary with the following keys:</P ><P ><CODE CLASS="envar" >VERSION</CODE >: the version of MSVS being used (can be set via MSVS_VERSION)</P ><P ><CODE CLASS="envar" >VERSIONS</CODE >: the available versions of MSVS installed</P ><P ><CODE CLASS="envar" >VCINSTALLDIR</CODE >: installed directory of Visual C++</P ><P ><CODE CLASS="envar" >VSINSTALLDIR</CODE >: installed directory of Visual Studio</P ><P ><CODE CLASS="envar" >FRAMEWORKDIR</CODE >: installed directory of the .NET framework</P ><P ><CODE CLASS="envar" >FRAMEWORKVERSIONS</CODE >: list of installed versions of the .NET framework, sorted latest to oldest.</P ><P ><CODE CLASS="envar" >FRAMEWORKVERSION</CODE >: latest installed version of the .NET framework</P ><P ><CODE CLASS="envar" >FRAMEWORKSDKDIR</CODE >: installed location of the .NET SDK.</P ><P ><CODE CLASS="envar" >PLATFORMSDKDIR</CODE >: installed location of the Platform SDK.</P ><P ><CODE CLASS="envar" >PLATFORMSDK_MODULES</CODE >: dictionary of installed Platform SDK modules, where the dictionary keys are keywords for the various modules, and the values are 2-tuples where the first is the release date, and the second is the version number.</P ><P >If a value isn't set, it wasn't available in the registry. </P ></DD ><DT ><A NAME="cv-MSVS_IGNORE_IDE_PATHS" ></A ><CODE CLASS="envar" >MSVS_IGNORE_IDE_PATHS</CODE ></DT ><DD ><P > Tells the MS Visual Studio tools to use minimal INCLUDE, LIB, and PATH settings, instead of the settings from the IDE.</P ><P >For Visual Studio, SCons will (by default) automatically determine where MSVS is installed, and use the LIB, INCLUDE, and PATH variables set by the IDE. You can override this behavior by setting these variables after Environment initialization, or by setting <CODE CLASS="envar" >MSVS_IGNORE_IDE_PATHS = 1</CODE > in the Environment initialization. Specifying this will not leave these unset, but will set them to a minimal set of paths needed to run the tools successfully.</P ><P >For VS6, the mininimal set is: </P ><PRE CLASS="programlisting" > INCLUDE:'<VSDir>\VC98\ATL\include;<VSDir>\VC98\MFC\include;<VSDir>\VC98\include' LIB:'<VSDir>\VC98\MFC\lib;<VSDir>\VC98\lib' PATH:'<VSDir>\Common\MSDev98\bin;<VSDir>\VC98\bin' </PRE ><P > For VS7, it is: </P ><PRE CLASS="programlisting" > INCLUDE:'<VSDir>\Vc7\atlmfc\include;<VSDir>\Vc7\include' LIB:'<VSDir>\Vc7\atlmfc\lib;<VSDir>\Vc7\lib' PATH:'<VSDir>\Common7\Tools\bin;<VSDir>\Common7\Tools;<VSDir>\Vc7\bin' </PRE ><P > Where '<VSDir>' is the installed location of Visual Studio. </P ></DD ><DT ><A NAME="cv-MSVS_PROJECT_BASE_PATH" ></A ><CODE CLASS="envar" >MSVS_PROJECT_BASE_PATH</CODE ></DT ><DD ><P > The string placed in a generated Microsoft Visual Studio solution file as the value of the <TT CLASS="literal" >SccProjectFilePathRelativizedFromConnection0</TT > and <TT CLASS="literal" >SccProjectFilePathRelativizedFromConnection1</TT > attributes of the <TT CLASS="literal" >GlobalSection(SourceCodeControl)</TT > section. There is no default value. </P ></DD ><DT ><A NAME="cv-MSVS_PROJECT_GUID" ></A ><CODE CLASS="envar" >MSVS_PROJECT_GUID</CODE ></DT ><DD ><P > The string placed in a generated Microsoft Visual Studio project file as the value of the <TT CLASS="literal" >ProjectGUID</TT > attribute. The string is also placed in the <TT CLASS="literal" >SolutionUniqueID</TT > attribute of the <TT CLASS="literal" >GlobalSection(SourceCodeControl)</TT > section of the Microsoft Visual Studio solution file. There is no default value. </P ></DD ><DT ><A NAME="cv-MSVS_SCC_AUX_PATH" ></A ><CODE CLASS="envar" >MSVS_SCC_AUX_PATH</CODE ></DT ><DD ><P > The path name placed in a generated Microsoft Visual Studio project file as the value of the <TT CLASS="literal" >SccAuxPath</TT > attribute if the <CODE CLASS="envar" >MSVS_SCC_PROVIDER</CODE > construction variable is also set. There is no default value. </P ></DD ><DT ><A NAME="cv-MSVS_SCC_LOCAL_PATH" ></A ><CODE CLASS="envar" >MSVS_SCC_LOCAL_PATH</CODE ></DT ><DD ><P > The path name placed in a generated Microsoft Visual Studio project file as the value of the <TT CLASS="literal" >SccLocalPath</TT > attribute if the <CODE CLASS="envar" >MSVS_SCC_PROVIDER</CODE > construction variable is also set. The path name is also placed in the <TT CLASS="literal" >SccLocalPath0</TT > and <TT CLASS="literal" >SccLocalPath1</TT > attributes of the <TT CLASS="literal" >GlobalSection(SourceCodeControl)</TT > section of the Microsoft Visual Studio solution file. There is no default value. </P ></DD ><DT ><A NAME="cv-MSVS_SCC_PROJECT_NAME" ></A ><CODE CLASS="envar" >MSVS_SCC_PROJECT_NAME</CODE ></DT ><DD ><P > The project name placed in a generated Microsoft Visual Studio project file as the value of the <TT CLASS="literal" >SccProjectName</TT > attribute. There is no default value. </P ></DD ><DT ><A NAME="cv-MSVS_SCC_PROVIDER" ></A ><CODE CLASS="envar" >MSVS_SCC_PROVIDER</CODE ></DT ><DD ><P > The string placed in a generated Microsoft Visual Studio project file as the value of the <TT CLASS="literal" >SccProvider</TT > attribute. The string is also placed in the <TT CLASS="literal" >SccProvider1</TT > attribute of the <TT CLASS="literal" >GlobalSection(SourceCodeControl)</TT > section of the Microsoft Visual Studio solution file. There is no default value. </P ></DD ><DT ><A NAME="cv-MSVS_USE_MFC_DIRS" ></A ><CODE CLASS="envar" >MSVS_USE_MFC_DIRS</CODE ></DT ><DD ><P > Tells the MS Visual Studio tool(s) to use the MFC directories in its default paths for compiling and linking. The <CODE CLASS="envar" >$MSVS_USE_MFC_DIRS</CODE > variable has no effect if the <CODE CLASS="envar" >INCLUDE</CODE > or <CODE CLASS="envar" >LIB</CODE > environment variables are set explictly.</P ><P >Under Visual Studio version 6, setting <CODE CLASS="envar" >$MSVS_USE_MFC_DIRS</CODE > to a non-zero value adds the <TT CLASS="filename" >ATL\include</TT > and <TT CLASS="filename" >MFC\include</TT > directories to the default <CODE CLASS="envar" >INCLUDE</CODE > external environment variable, and adds the <TT CLASS="filename" >MFC\lib</TT > directory to the default <CODE CLASS="envar" >LIB</CODE > external environment variable.</P ><P >Under Visual Studio version 7, setting <CODE CLASS="envar" >$MSVS_USE_MFC_DIRS</CODE > to a non-zero value adds the <TT CLASS="filename" >atlmfc\include</TT > directory to the default <CODE CLASS="envar" >INCLUDE</CODE > external environment variable, and adds the <TT CLASS="filename" >atlmfc\lib</TT > directory to the default <CODE CLASS="envar" >LIB</CODE > external environment variable.</P ><P >Under Visual Studio version 8, setting <CODE CLASS="envar" >$MSVS_USE_MFC_DIRS</CODE > to a non-zero value will, by default, add the <TT CLASS="filename" >atlmfc\include</TT > directory to the default <CODE CLASS="envar" >INCLUDE</CODE > external environment variable, and the <TT CLASS="filename" >atlmfc\lib</TT > directory to the default <CODE CLASS="envar" >LIB</CODE > external environment variable. If, however, the <CODE CLASS="envar" >['MSVS']['PLATFORMSDKDIR']</CODE > variable is set, then the <TT CLASS="filename" >mfc</TT > and the <TT CLASS="filename" >atl</TT > subdirectories of the <CODE CLASS="envar" >PLATFORMSDKDIR</CODE > are added to the default value of the <CODE CLASS="envar" >INCLUDE</CODE > external environment variable, and the default value of the <CODE CLASS="envar" >LIB</CODE > external environment variable is left untouched. </P ></DD ><DT ><A NAME="cv-MSVS_VERSION" ></A ><CODE CLASS="envar" >MSVS_VERSION</CODE ></DT ><DD ><P > Sets the preferred version of MSVS to use.</P ><P >SCons will (by default) select the latest version of MSVS installed on your machine. So, if you have version 6 and version 7 (MSVS .NET) installed, it will prefer version 7. You can override this by specifying the <CODE CLASS="envar" >MSVS_VERSION</CODE > variable in the Environment initialization, setting it to the appropriate version ('6.0' or '7.0', for example). If the given version isn't installed, tool initialization will fail. </P ></DD ><DT ><A NAME="cv-MSVSBUILDCOM" ></A ><CODE CLASS="envar" >MSVSBUILDCOM</CODE ></DT ><DD ><P > The build command line placed in a generated Microsoft Visual Studio project file. The default is to have Visual Studio invoke SCons with any specified build targets. </P ></DD ><DT ><A NAME="cv-MSVSCLEANCOM" ></A ><CODE CLASS="envar" >MSVSCLEANCOM</CODE ></DT ><DD ><P > The clean command line placed in a generated Microsoft Visual Studio project file. The default is to have Visual Studio invoke SCons with the -c option to remove any specified targets. </P ></DD ><DT ><A NAME="cv-MSVSENCODING" ></A ><CODE CLASS="envar" >MSVSENCODING</CODE ></DT ><DD ><P > The encoding string placed in a generated Microsoft Visual Studio project file. The default is encoding <TT CLASS="literal" >Windows-1252</TT >. </P ></DD ><DT ><A NAME="cv-MSVSPROJECTCOM" ></A ><CODE CLASS="envar" >MSVSPROJECTCOM</CODE ></DT ><DD ><P > The action used to generate Microsoft Visual Studio project files. </P ></DD ><DT ><A NAME="cv-MSVSPROJECTSUFFIX" ></A ><CODE CLASS="envar" >MSVSPROJECTSUFFIX</CODE ></DT ><DD ><P > The suffix used for Microsoft Visual Studio project (DSP) files. The default value is <TT CLASS="filename" >.vcproj</TT > when using Visual Studio version 7.x (.NET) or later version, and <TT CLASS="filename" >.dsp</TT > when using earlier versions of Visual Studio. </P ></DD ><DT ><A NAME="cv-MSVSREBUILDCOM" ></A ><CODE CLASS="envar" >MSVSREBUILDCOM</CODE ></DT ><DD ><P > The rebuild command line placed in a generated Microsoft Visual Studio project file. The default is to have Visual Studio invoke SCons with any specified rebuild targets. </P ></DD ><DT ><A NAME="cv-MSVSSCONS" ></A ><CODE CLASS="envar" >MSVSSCONS</CODE ></DT ><DD ><P > The SCons used in generated Microsoft Visual Studio project files. The default is the version of SCons being used to generate the project file. </P ></DD ><DT ><A NAME="cv-MSVSSCONSCOM" ></A ><CODE CLASS="envar" >MSVSSCONSCOM</CODE ></DT ><DD ><P > The default SCons command used in generated Microsoft Visual Studio project files. </P ></DD ><DT ><A NAME="cv-MSVSSCONSCRIPT" ></A ><CODE CLASS="envar" >MSVSSCONSCRIPT</CODE ></DT ><DD ><P > The sconscript file (that is, <TT CLASS="filename" >SConstruct</TT > or <TT CLASS="filename" >SConscript</TT > file) that will be invoked by Visual Studio project files (through the <A HREF="#cv-MSVSSCONSCOM" ><CODE CLASS="envar" >$MSVSSCONSCOM</CODE ></A > variable). The default is the same sconscript file that contains the call to <CODE CLASS="function" >MSVSProject</CODE > to build the project file. </P ></DD ><DT ><A NAME="cv-MSVSSCONSFLAGS" ></A ><CODE CLASS="envar" >MSVSSCONSFLAGS</CODE ></DT ><DD ><P > The SCons flags used in generated Microsoft Visual Studio project files. </P ></DD ><DT ><A NAME="cv-MSVSSOLUTIONCOM" ></A ><CODE CLASS="envar" >MSVSSOLUTIONCOM</CODE ></DT ><DD ><P > The action used to generate Microsoft Visual Studio solution files. </P ></DD ><DT ><A NAME="cv-MSVSSOLUTIONSUFFIX" ></A ><CODE CLASS="envar" >MSVSSOLUTIONSUFFIX</CODE ></DT ><DD ><P > The suffix used for Microsoft Visual Studio solution (DSW) files. The default value is <TT CLASS="filename" >.sln</TT > when using Visual Studio version 7.x (.NET), and <TT CLASS="filename" >.dsw</TT > when using earlier versions of Visual Studio. </P ></DD ><DT ><A NAME="cv-MWCW_VERSION" ></A ><CODE CLASS="envar" >MWCW_VERSION</CODE ></DT ><DD ><P > The version number of the MetroWerks CodeWarrior C compiler to be used. </P ></DD ><DT ><A NAME="cv-MWCW_VERSIONS" ></A ><CODE CLASS="envar" >MWCW_VERSIONS</CODE ></DT ><DD ><P > A list of installed versions of the MetroWerks CodeWarrior C compiler on this system. </P ></DD ><DT ><A NAME="cv-NAME" ></A ><CODE CLASS="envar" >NAME</CODE ></DT ><DD ><P > Specfies the name of the project to package. </P ></DD ><DT ><A NAME="cv-no_import_lib" ></A ><CODE CLASS="envar" >no_import_lib</CODE ></DT ><DD ><P > When set to non-zero, suppresses creation of a corresponding Windows static import lib by the <TT CLASS="literal" >SharedLibrary</TT > builder when used with MinGW, Microsoft Visual Studio or Metrowerks. This also suppresses creation of an export (.exp) file when using Microsoft Visual Studio. </P ></DD ><DT ><A NAME="cv-OBJPREFIX" ></A ><CODE CLASS="envar" >OBJPREFIX</CODE ></DT ><DD ><P > The prefix used for (static) object file names. </P ></DD ><DT ><A NAME="cv-OBJSUFFIX" ></A ><CODE CLASS="envar" >OBJSUFFIX</CODE ></DT ><DD ><P > The suffix used for (static) object file names. </P ></DD ><DT ><A NAME="cv-P4" ></A ><CODE CLASS="envar" >P4</CODE ></DT ><DD ><P > The Perforce executable. </P ></DD ><DT ><A NAME="cv-P4COM" ></A ><CODE CLASS="envar" >P4COM</CODE ></DT ><DD ><P > The command line used to fetch source files from Perforce. </P ></DD ><DT ><A NAME="cv-P4COMSTR" ></A ><CODE CLASS="envar" >P4COMSTR</CODE ></DT ><DD ><P > The string displayed when fetching a source file from Perforce. If this is not set, then <A HREF="#cv-P4COM" ><CODE CLASS="envar" >$P4COM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-P4FLAGS" ></A ><CODE CLASS="envar" >P4FLAGS</CODE ></DT ><DD ><P > General options that are passed to Perforce. </P ></DD ><DT ><A NAME="cv-PACKAGEROOT" ></A ><CODE CLASS="envar" >PACKAGEROOT</CODE ></DT ><DD ><P > Specifies the directory where all files in resulting archive will be placed if applicable. The default value is "$NAME-$VERSION". </P ></DD ><DT ><A NAME="cv-PACKAGETYPE" ></A ><CODE CLASS="envar" >PACKAGETYPE</CODE ></DT ><DD ><P > Selects the package type to build. Currently these are available:</P ><P > * msi - Microsoft Installer * rpm - Redhat Package Manger * ipkg - Itsy Package Management System * tarbz2 - compressed tar * targz - compressed tar * zip - zip file * src_tarbz2 - compressed tar source * src_targz - compressed tar source * src_zip - zip file source</P ><P >This may be overridden with the "package_type" command line option. </P ></DD ><DT ><A NAME="cv-PACKAGEVERSION" ></A ><CODE CLASS="envar" >PACKAGEVERSION</CODE ></DT ><DD ><P > The version of the package (not the underlying project). This is currently only used by the rpm packager and should reflect changes in the packaging, not the underlying project code itself. </P ></DD ><DT ><A NAME="cv-PCH" ></A ><CODE CLASS="envar" >PCH</CODE ></DT ><DD ><P > The Microsoft Visual C++ precompiled header that will be used when compiling object files. This variable is ignored by tools other than Microsoft Visual C++. When this variable is defined SCons will add options to the compiler command line to cause it to use the precompiled header, and will also set up the dependencies for the PCH file. Example: </P ><PRE CLASS="programlisting" > env['PCH'] = 'StdAfx.pch' </PRE ></DD ><DT ><A NAME="cv-PCHCOM" ></A ><CODE CLASS="envar" >PCHCOM</CODE ></DT ><DD ><P > The command line used by the <CODE CLASS="function" >PCH</CODE > builder to generated a precompiled header. </P ></DD ><DT ><A NAME="cv-PCHCOMSTR" ></A ><CODE CLASS="envar" >PCHCOMSTR</CODE ></DT ><DD ><P > The string displayed when generating a precompiled header. If this is not set, then <A HREF="#cv-PCHCOM" ><CODE CLASS="envar" >$PCHCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-PCHPDBFLAGS" ></A ><CODE CLASS="envar" >PCHPDBFLAGS</CODE ></DT ><DD ><P > A construction variable that, when expanded, adds the <TT CLASS="literal" >/yD</TT > flag to the command line only if the <CODE CLASS="envar" >$PDB</CODE > construction variable is set. </P ></DD ><DT ><A NAME="cv-PCHSTOP" ></A ><CODE CLASS="envar" >PCHSTOP</CODE ></DT ><DD ><P > This variable specifies how much of a source file is precompiled. This variable is ignored by tools other than Microsoft Visual C++, or when the PCH variable is not being used. When this variable is define it must be a string that is the name of the header that is included at the end of the precompiled portion of the source files, or the empty string if the "#pragma hrdstop" construct is being used: </P ><PRE CLASS="programlisting" > env['PCHSTOP'] = 'StdAfx.h' </PRE ></DD ><DT ><A NAME="cv-PDB" ></A ><CODE CLASS="envar" >PDB</CODE ></DT ><DD ><P > The Microsoft Visual C++ PDB file that will store debugging information for object files, shared libraries, and programs. This variable is ignored by tools other than Microsoft Visual C++. When this variable is defined SCons will add options to the compiler and linker command line to cause them to generate external debugging information, and will also set up the dependencies for the PDB file. Example: </P ><PRE CLASS="programlisting" > env['PDB'] = 'hello.pdb' </PRE ><P > The Visual C++ compiler switch that SCons uses by default to generate PDB information is <CODE CLASS="option" >/Z7</CODE >. This works correctly with parallel (<CODE CLASS="option" >-j</CODE >) builds because it embeds the debug information in the intermediate object files, as opposed to sharing a single PDB file between multiple object files. This is also the only way to get debug information embedded into a static library. Using the <CODE CLASS="option" >/Zi</CODE > instead may yield improved link-time performance, although parallel builds will no longer work. You can generate PDB files with the <CODE CLASS="option" >/Zi</CODE > switch by overriding the default <A HREF="#cv-CCPDBFLAGS" ><CODE CLASS="envar" >$CCPDBFLAGS</CODE ></A > variable; see the entry for that variable for specific examples. </P ></DD ><DT ><A NAME="cv-PDFCOM" ></A ><CODE CLASS="envar" >PDFCOM</CODE ></DT ><DD ><P > A deprecated synonym for <A HREF="#cv-DVIPDFCOM" ><CODE CLASS="envar" >$DVIPDFCOM</CODE ></A >. </P ></DD ><DT ><A NAME="cv-PDFLATEX" ></A ><CODE CLASS="envar" >PDFLATEX</CODE ></DT ><DD ><P > The <SPAN CLASS="application" >pdflatex</SPAN > utility. </P ></DD ><DT ><A NAME="cv-PDFLATEXCOM" ></A ><CODE CLASS="envar" >PDFLATEXCOM</CODE ></DT ><DD ><P > The command line used to call the <SPAN CLASS="application" >pdflatex</SPAN > utility. </P ></DD ><DT ><A NAME="cv-PDFLATEXCOMSTR" ></A ><CODE CLASS="envar" >PDFLATEXCOMSTR</CODE ></DT ><DD ><P > The string displayed when calling the <SPAN CLASS="application" >pdflatex</SPAN > utility. If this is not set, then <A HREF="#cv-PDFLATEXCOM" ><CODE CLASS="envar" >$PDFLATEXCOM</CODE ></A > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(PDFLATEX;COMSTR = "Building $TARGET from LaTeX input $SOURCES") </PRE ></DD ><DT ><A NAME="cv-PDFLATEXFLAGS" ></A ><CODE CLASS="envar" >PDFLATEXFLAGS</CODE ></DT ><DD ><P > General options passed to the <SPAN CLASS="application" >pdflatex</SPAN > utility. </P ></DD ><DT ><A NAME="cv-PDFPREFIX" ></A ><CODE CLASS="envar" >PDFPREFIX</CODE ></DT ><DD ><P > The prefix used for PDF file names. </P ></DD ><DT ><A NAME="cv-PDFSUFFIX" ></A ><CODE CLASS="envar" >PDFSUFFIX</CODE ></DT ><DD ><P > The suffix used for PDF file names. </P ></DD ><DT ><A NAME="cv-PDFTEX" ></A ><CODE CLASS="envar" >PDFTEX</CODE ></DT ><DD ><P > The <SPAN CLASS="application" >pdftex</SPAN > utility. </P ></DD ><DT ><A NAME="cv-PDFTEXCOM" ></A ><CODE CLASS="envar" >PDFTEXCOM</CODE ></DT ><DD ><P > The command line used to call the <SPAN CLASS="application" >pdftex</SPAN > utility. </P ></DD ><DT ><A NAME="cv-PDFTEXCOMSTR" ></A ><CODE CLASS="envar" >PDFTEXCOMSTR</CODE ></DT ><DD ><P > The string displayed when calling the <SPAN CLASS="application" >pdftex</SPAN > utility. If this is not set, then <A HREF="#cv-PDFTEXCOM" ><CODE CLASS="envar" >$PDFTEXCOM</CODE ></A > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(PDFTEXCOMSTR = "Building $TARGET from TeX input $SOURCES") </PRE ></DD ><DT ><A NAME="cv-PDFTEXFLAGS" ></A ><CODE CLASS="envar" >PDFTEXFLAGS</CODE ></DT ><DD ><P > General options passed to the <SPAN CLASS="application" >pdftex</SPAN > utility. </P ></DD ><DT ><A NAME="cv-PKGCHK" ></A ><CODE CLASS="envar" >PKGCHK</CODE ></DT ><DD ><P > On Solaris systems, the package-checking program that will be used (along with <CODE CLASS="envar" >$PKGINFO</CODE >) to look for installed versions of the Sun PRO C++ compiler. The default is <TT CLASS="filename" >/usr/sbin/pgkchk</TT >. </P ></DD ><DT ><A NAME="cv-PKGINFO" ></A ><CODE CLASS="envar" >PKGINFO</CODE ></DT ><DD ><P > On Solaris systems, the package information program that will be used (along with <CODE CLASS="envar" >$PKGCHK</CODE >) to look for installed versions of the Sun PRO C++ compiler. The default is <TT CLASS="filename" >pkginfo</TT >. </P ></DD ><DT ><A NAME="cv-PLATFORM" ></A ><CODE CLASS="envar" >PLATFORM</CODE ></DT ><DD ><P > The name of the platform used to create the Environment. If no platform is specified when the Environment is created, <SPAN CLASS="application" >scons</SPAN > autodetects the platform. </P ><PRE CLASS="programlisting" > env = Environment(tools = []) if env['PLATFORM'] == 'cygwin': Tool('mingw')(env) else: Tool('msvc')(env) </PRE ></DD ><DT ><A NAME="cv-PRINT_CMD_LINE_FUNC" ></A ><CODE CLASS="envar" >PRINT_CMD_LINE_FUNC</CODE ></DT ><DD ><P > A Python function used to print the command lines as they are executed (assuming command printing is not disabled by the <CODE CLASS="option" >-q</CODE > or <CODE CLASS="option" >-s</CODE > options or their equivalents). The function should take four arguments: <CODE CLASS="varname" >s</CODE >, the command being executed (a string), <CODE CLASS="varname" >target</CODE >, the target being built (file node, list, or string name(s)), <CODE CLASS="varname" >source</CODE >, the source(s) used (file node, list, or string name(s)), and <CODE CLASS="varname" >env</CODE >, the environment being used.</P ><P >The function must do the printing itself. The default implementation, used if this variable is not set or is None, is: </P ><PRE CLASS="programlisting" > def print_cmd_line(s, target, source, env): sys.stdout.write(s + "\n") </PRE ><P > Here's an example of a more interesting function: </P ><PRE CLASS="programlisting" > def print_cmd_line(s, target, source, env): sys.stdout.write("Building %s -> %s...\n" % (' and '.join([str(x) for x in source]), ' and '.join([str(x) for x in target]))) env=Environment(PRINT_CMD_LINE_FUNC=print_cmd_line) env.Program('foo', 'foo.c') </PRE ><P > This just prints "Building <CODE CLASS="varname" >targetname</CODE > from <CODE CLASS="varname" >sourcename</CODE >..." instead of the actual commands. Such a function could also log the actual commands to a log file, for example. </P ></DD ><DT ><A NAME="cv-PROGPREFIX" ></A ><CODE CLASS="envar" >PROGPREFIX</CODE ></DT ><DD ><P > The prefix used for executable file names. </P ></DD ><DT ><A NAME="cv-PROGSUFFIX" ></A ><CODE CLASS="envar" >PROGSUFFIX</CODE ></DT ><DD ><P > The suffix used for executable file names. </P ></DD ><DT ><A NAME="cv-PSCOM" ></A ><CODE CLASS="envar" >PSCOM</CODE ></DT ><DD ><P > The command line used to convert TeX DVI files into a PostScript file. </P ></DD ><DT ><A NAME="cv-PSCOMSTR" ></A ><CODE CLASS="envar" >PSCOMSTR</CODE ></DT ><DD ><P > The string displayed when a TeX DVI file is converted into a PostScript file. If this is not set, then <A HREF="#cv-PSCOM" ><CODE CLASS="envar" >$PSCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-PSPREFIX" ></A ><CODE CLASS="envar" >PSPREFIX</CODE ></DT ><DD ><P > The prefix used for PostScript file names. </P ></DD ><DT ><A NAME="cv-PSSUFFIX" ></A ><CODE CLASS="envar" >PSSUFFIX</CODE ></DT ><DD ><P > The prefix used for PostScript file names. </P ></DD ><DT ><A NAME="cv-QT_AUTOSCAN" ></A ><CODE CLASS="envar" >QT_AUTOSCAN</CODE ></DT ><DD ><P > Turn off scanning for mocable files. Use the Moc Builder to explicitely specify files to run moc on. </P ></DD ><DT ><A NAME="cv-QT_BINPATH" ></A ><CODE CLASS="envar" >QT_BINPATH</CODE ></DT ><DD ><P > The path where the qt binaries are installed. The default value is '<A HREF="#cv-QTDIR" ><CODE CLASS="envar" >$QTDIR</CODE ></A >/bin'. </P ></DD ><DT ><A NAME="cv-QT_CPPPATH" ></A ><CODE CLASS="envar" >QT_CPPPATH</CODE ></DT ><DD ><P > The path where the qt header files are installed. The default value is '<A HREF="#cv-QTDIR" ><CODE CLASS="envar" >$QTDIR</CODE ></A >/include'. Note: If you set this variable to None, the tool won't change the <A HREF="#cv-CPPPATH" ><CODE CLASS="envar" >$CPPPATH</CODE ></A > construction variable. </P ></DD ><DT ><A NAME="cv-QT_DEBUG" ></A ><CODE CLASS="envar" >QT_DEBUG</CODE ></DT ><DD ><P > Prints lots of debugging information while scanning for moc files. </P ></DD ><DT ><A NAME="cv-QT_LIB" ></A ><CODE CLASS="envar" >QT_LIB</CODE ></DT ><DD ><P > Default value is 'qt'. You may want to set this to 'qt-mt'. Note: If you set this variable to None, the tool won't change the <A HREF="#cv-LIBS" ><CODE CLASS="envar" >$LIBS</CODE ></A > variable. </P ></DD ><DT ><A NAME="cv-QT_LIBPATH" ></A ><CODE CLASS="envar" >QT_LIBPATH</CODE ></DT ><DD ><P > The path where the qt libraries are installed. The default value is '<A HREF="#cv-QTDIR" ><CODE CLASS="envar" >$QTDIR</CODE ></A >/lib'. Note: If you set this variable to None, the tool won't change the <A HREF="#cv-LIBPATH" ><CODE CLASS="envar" >$LIBPATH</CODE ></A > construction variable. </P ></DD ><DT ><A NAME="cv-QT_MOC" ></A ><CODE CLASS="envar" >QT_MOC</CODE ></DT ><DD ><P > Default value is '<A HREF="#cv-QT_BINPATH" ><CODE CLASS="envar" >$QT_BINPATH</CODE ></A >/moc'. </P ></DD ><DT ><A NAME="cv-QT_MOCCXXPREFIX" ></A ><CODE CLASS="envar" >QT_MOCCXXPREFIX</CODE ></DT ><DD ><P > Default value is ''. Prefix for moc output files, when source is a cxx file. </P ></DD ><DT ><A NAME="cv-QT_MOCCXXSUFFIX" ></A ><CODE CLASS="envar" >QT_MOCCXXSUFFIX</CODE ></DT ><DD ><P > Default value is '.moc'. Suffix for moc output files, when source is a cxx file. </P ></DD ><DT ><A NAME="cv-QT_MOCFROMCXXCOM" ></A ><CODE CLASS="envar" >QT_MOCFROMCXXCOM</CODE ></DT ><DD ><P > Command to generate a moc file from a cpp file. </P ></DD ><DT ><A NAME="cv-QT_MOCFROMCXXCOMSTR" ></A ><CODE CLASS="envar" >QT_MOCFROMCXXCOMSTR</CODE ></DT ><DD ><P > The string displayed when generating a moc file from a cpp file. If this is not set, then <A HREF="#cv-QT_MOCFROMCXXCOM" ><CODE CLASS="envar" >$QT_MOCFROMCXXCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-QT_MOCFROMCXXFLAGS" ></A ><CODE CLASS="envar" >QT_MOCFROMCXXFLAGS</CODE ></DT ><DD ><P > Default value is '-i'. These flags are passed to moc, when moccing a C++ file. </P ></DD ><DT ><A NAME="cv-QT_MOCFROMHCOM" ></A ><CODE CLASS="envar" >QT_MOCFROMHCOM</CODE ></DT ><DD ><P > Command to generate a moc file from a header. </P ></DD ><DT ><A NAME="cv-QT_MOCFROMHCOMSTR" ></A ><CODE CLASS="envar" >QT_MOCFROMHCOMSTR</CODE ></DT ><DD ><P > The string displayed when generating a moc file from a cpp file. If this is not set, then <A HREF="#cv-QT_MOCFROMHCOM" ><CODE CLASS="envar" >$QT_MOCFROMHCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-QT_MOCFROMHFLAGS" ></A ><CODE CLASS="envar" >QT_MOCFROMHFLAGS</CODE ></DT ><DD ><P > Default value is ''. These flags are passed to moc, when moccing a header file. </P ></DD ><DT ><A NAME="cv-QT_MOCHPREFIX" ></A ><CODE CLASS="envar" >QT_MOCHPREFIX</CODE ></DT ><DD ><P > Default value is 'moc_'. Prefix for moc output files, when source is a header. </P ></DD ><DT ><A NAME="cv-QT_MOCHSUFFIX" ></A ><CODE CLASS="envar" >QT_MOCHSUFFIX</CODE ></DT ><DD ><P > Default value is '<A HREF="#cv-CXXFILESUFFIX" ><CODE CLASS="envar" >$CXXFILESUFFIX</CODE ></A >'. Suffix for moc output files, when source is a header. </P ></DD ><DT ><A NAME="cv-QT_UIC" ></A ><CODE CLASS="envar" >QT_UIC</CODE ></DT ><DD ><P > Default value is '<A HREF="#cv-QT_BINPATH" ><CODE CLASS="envar" >$QT_BINPATH</CODE ></A >/uic'. </P ></DD ><DT ><A NAME="cv-QT_UICCOM" ></A ><CODE CLASS="envar" >QT_UICCOM</CODE ></DT ><DD ><P > Command to generate header files from .ui files. </P ></DD ><DT ><A NAME="cv-QT_UICCOMSTR" ></A ><CODE CLASS="envar" >QT_UICCOMSTR</CODE ></DT ><DD ><P > The string displayed when generating header files from .ui files. If this is not set, then <A HREF="#cv-QT_UICCOM" ><CODE CLASS="envar" >$QT_UICCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-QT_UICDECLFLAGS" ></A ><CODE CLASS="envar" >QT_UICDECLFLAGS</CODE ></DT ><DD ><P > Default value is ''. These flags are passed to uic, when creating a a h file from a .ui file. </P ></DD ><DT ><A NAME="cv-QT_UICDECLPREFIX" ></A ><CODE CLASS="envar" >QT_UICDECLPREFIX</CODE ></DT ><DD ><P > Default value is ''. Prefix for uic generated header files. </P ></DD ><DT ><A NAME="cv-QT_UICDECLSUFFIX" ></A ><CODE CLASS="envar" >QT_UICDECLSUFFIX</CODE ></DT ><DD ><P > Default value is '.h'. Suffix for uic generated header files. </P ></DD ><DT ><A NAME="cv-QT_UICIMPLFLAGS" ></A ><CODE CLASS="envar" >QT_UICIMPLFLAGS</CODE ></DT ><DD ><P > Default value is ''. These flags are passed to uic, when creating a cxx file from a .ui file. </P ></DD ><DT ><A NAME="cv-QT_UICIMPLPREFIX" ></A ><CODE CLASS="envar" >QT_UICIMPLPREFIX</CODE ></DT ><DD ><P > Default value is 'uic_'. Prefix for uic generated implementation files. </P ></DD ><DT ><A NAME="cv-QT_UICIMPLSUFFIX" ></A ><CODE CLASS="envar" >QT_UICIMPLSUFFIX</CODE ></DT ><DD ><P > Default value is '<A HREF="#cv-CXXFILESUFFIX" ><CODE CLASS="envar" >$CXXFILESUFFIX</CODE ></A >'. Suffix for uic generated implementation files. </P ></DD ><DT ><A NAME="cv-QT_UISUFFIX" ></A ><CODE CLASS="envar" >QT_UISUFFIX</CODE ></DT ><DD ><P > Default value is '.ui'. Suffix of designer input files. </P ></DD ><DT ><A NAME="cv-QTDIR" ></A ><CODE CLASS="envar" >QTDIR</CODE ></DT ><DD ><P > The qt tool tries to take this from os.environ. It also initializes all QT_* construction variables listed below. (Note that all paths are constructed with python's os.path.join() method, but are listed here with the '/' separator for easier reading.) In addition, the construction environment variables <A HREF="#cv-CPPPATH" ><CODE CLASS="envar" >$CPPPATH</CODE ></A >, <A HREF="#cv-LIBPATH" ><CODE CLASS="envar" >$LIBPATH</CODE ></A > and <A HREF="#cv-LIBS" ><CODE CLASS="envar" >$LIBS</CODE ></A > may be modified and the variables PROGEMITTER, SHLIBEMITTER and LIBEMITTER are modified. Because the build-performance is affected when using this tool, you have to explicitly specify it at Environment creation: </P ><PRE CLASS="programlisting" > Environment(tools=['default','qt']) </PRE ><P > The qt tool supports the following operations:</P ><P ><SPAN CLASS="emphasis" ><I CLASS="emphasis" >Automatic moc file generation from header files.</I ></SPAN > You do not have to specify moc files explicitly, the tool does it for you. However, there are a few preconditions to do so: Your header file must have the same filebase as your implementation file and must stay in the same directory. It must have one of the suffixes .h, .hpp, .H, .hxx, .hh. You can turn off automatic moc file generation by setting QT_AUTOSCAN to 0. See also the corresponding builder method .B Moc()</P ><P ><SPAN CLASS="emphasis" ><I CLASS="emphasis" >Automatic moc file generation from cxx files.</I ></SPAN > As stated in the qt documentation, include the moc file at the end of the cxx file. Note that you have to include the file, which is generated by the transformation ${QT_MOCCXXPREFIX}<basename>${QT_MOCCXXSUFFIX}, by default <basename>.moc. A warning is generated after building the moc file, if you do not include the correct file. If you are using VariantDir, you may need to specify duplicate=1. You can turn off automatic moc file generation by setting QT_AUTOSCAN to 0. See also the corresponding <CODE CLASS="function" >Moc</CODE > builder method.</P ><P ><SPAN CLASS="emphasis" ><I CLASS="emphasis" >Automatic handling of .ui files.</I ></SPAN > The implementation files generated from .ui files are handled much the same as yacc or lex files. Each .ui file given as a source of Program, Library or SharedLibrary will generate three files, the declaration file, the implementation file and a moc file. Because there are also generated headers, you may need to specify duplicate=1 in calls to VariantDir. See also the corresponding <CODE CLASS="function" >Uic</CODE > builder method. </P ></DD ><DT ><A NAME="cv-RANLIB" ></A ><CODE CLASS="envar" >RANLIB</CODE ></DT ><DD ><P > The archive indexer. </P ></DD ><DT ><A NAME="cv-RANLIBCOM" ></A ><CODE CLASS="envar" >RANLIBCOM</CODE ></DT ><DD ><P > The command line used to index a static library archive. </P ></DD ><DT ><A NAME="cv-RANLIBCOMSTR" ></A ><CODE CLASS="envar" >RANLIBCOMSTR</CODE ></DT ><DD ><P > The string displayed when a static library archive is indexed. If this is not set, then <A HREF="#cv-RANLIBCOM" ><CODE CLASS="envar" >$RANLIBCOM</CODE ></A > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(RANLIBCOMSTR = "Indexing $TARGET") </PRE ></DD ><DT ><A NAME="cv-RANLIBFLAGS" ></A ><CODE CLASS="envar" >RANLIBFLAGS</CODE ></DT ><DD ><P > General options passed to the archive indexer. </P ></DD ><DT ><A NAME="cv-RC" ></A ><CODE CLASS="envar" >RC</CODE ></DT ><DD ><P > The resource compiler used to build a Microsoft Visual C++ resource file. </P ></DD ><DT ><A NAME="cv-RCCOM" ></A ><CODE CLASS="envar" >RCCOM</CODE ></DT ><DD ><P > The command line used to build a Microsoft Visual C++ resource file. </P ></DD ><DT ><A NAME="cv-RCCOMSTR" ></A ><CODE CLASS="envar" >RCCOMSTR</CODE ></DT ><DD ><P > The string displayed when invoking the resource compiler to build a Microsoft Visual C++ resource file. If this is not set, then <A HREF="#cv-RCCOM" ><CODE CLASS="envar" >$RCCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-RCFLAGS" ></A ><CODE CLASS="envar" >RCFLAGS</CODE ></DT ><DD ><P > The flags passed to the resource compiler by the RES builder. </P ></DD ><DT ><A NAME="cv-RCINCFLAGS" ></A ><CODE CLASS="envar" >RCINCFLAGS</CODE ></DT ><DD ><P > An automatically-generated construction variable containing the command-line options for specifying directories to be searched by the resource compiler. The value of <CODE CLASS="envar" >$RCINCFLAGS</CODE > is created by appending <CODE CLASS="envar" >$RCINCPREFIX</CODE > and <CODE CLASS="envar" >$RCINCSUFFIX</CODE > to the beginning and end of each directory in <CODE CLASS="envar" >$CPPPATH</CODE >. </P ></DD ><DT ><A NAME="cv-RCINCPREFIX" ></A ><CODE CLASS="envar" >RCINCPREFIX</CODE ></DT ><DD ><P > The prefix (flag) used to specify an include directory on the resource compiler command line. This will be appended to the beginning of each directory in the <CODE CLASS="envar" >$CPPPATH</CODE > construction variable when the <CODE CLASS="envar" >$RCINCFLAGS</CODE > variable is expanded. </P ></DD ><DT ><A NAME="cv-RCINCSUFFIX" ></A ><CODE CLASS="envar" >RCINCSUFFIX</CODE ></DT ><DD ><P > The suffix used to specify an include directory on the resource compiler command line. This will be appended to the end of each directory in the <CODE CLASS="envar" >$CPPPATH</CODE > construction variable when the <CODE CLASS="envar" >$RCINCFLAGS</CODE > variable is expanded. </P ></DD ><DT ><A NAME="cv-RCS" ></A ><CODE CLASS="envar" >RCS</CODE ></DT ><DD ><P > The RCS executable. Note that this variable is not actually used for the command to fetch source files from RCS; see the <A HREF="#cv-RCS_CO" ><CODE CLASS="envar" >$RCS_CO</CODE ></A > construction variable, below. </P ></DD ><DT ><A NAME="cv-RCS_CO" ></A ><CODE CLASS="envar" >RCS_CO</CODE ></DT ><DD ><P > The RCS "checkout" executable, used to fetch source files from RCS. </P ></DD ><DT ><A NAME="cv-RCS_COCOM" ></A ><CODE CLASS="envar" >RCS_COCOM</CODE ></DT ><DD ><P > The command line used to fetch (checkout) source files from RCS. </P ></DD ><DT ><A NAME="cv-RCS_COCOMSTR" ></A ><CODE CLASS="envar" >RCS_COCOMSTR</CODE ></DT ><DD ><P > The string displayed when fetching a source file from RCS. If this is not set, then <A HREF="#cv-RCS_COCOM" ><CODE CLASS="envar" >$RCS_COCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-RCS_COFLAGS" ></A ><CODE CLASS="envar" >RCS_COFLAGS</CODE ></DT ><DD ><P > Options that are passed to the <A HREF="#cv-RCS_CO" ><CODE CLASS="envar" >$RCS_CO</CODE ></A > command. </P ></DD ><DT ><A NAME="cv-RDirs" ></A ><CODE CLASS="envar" >RDirs</CODE ></DT ><DD ><P > A function that converts a string into a list of Dir instances by searching the repositories. </P ></DD ><DT ><A NAME="cv-REGSVR" ></A ><CODE CLASS="envar" >REGSVR</CODE ></DT ><DD ><P > The program used on Windows systems to register a newly-built DLL library whenever the <CODE CLASS="function" >SharedLibrary</CODE > builder is passed a keyword argument of <TT CLASS="literal" >register=1</TT >. </P ></DD ><DT ><A NAME="cv-REGSVRCOM" ></A ><CODE CLASS="envar" >REGSVRCOM</CODE ></DT ><DD ><P > The command line used on Windows systems to register a newly-built DLL library whenever the <CODE CLASS="function" >SharedLibrary</CODE > builder is passed a keyword argument of <TT CLASS="literal" >register=1</TT >. </P ></DD ><DT ><A NAME="cv-REGSVRCOMSTR" ></A ><CODE CLASS="envar" >REGSVRCOMSTR</CODE ></DT ><DD ><P > The string displayed when registering a newly-built DLL file. If this is not set, then <A HREF="#cv-REGSVRCOM" ><CODE CLASS="envar" >$REGSVRCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-REGSVRFLAGS" ></A ><CODE CLASS="envar" >REGSVRFLAGS</CODE ></DT ><DD ><P > Flags passed to the DLL registration program on Windows systems when a newly-built DLL library is registered. By default, this includes the <CODE CLASS="option" >/s</CODE > that prevents dialog boxes from popping up and requiring user attention. </P ></DD ><DT ><A NAME="cv-RMIC" ></A ><CODE CLASS="envar" >RMIC</CODE ></DT ><DD ><P > The Java RMI stub compiler. </P ></DD ><DT ><A NAME="cv-RMICCOM" ></A ><CODE CLASS="envar" >RMICCOM</CODE ></DT ><DD ><P > The command line used to compile stub and skeleton class files from Java classes that contain RMI implementations. Any options specified in the <A HREF="#cv-RMICFLAGS" ><CODE CLASS="envar" >$RMICFLAGS</CODE ></A > construction variable are included on this command line. </P ></DD ><DT ><A NAME="cv-RMICCOMSTR" ></A ><CODE CLASS="envar" >RMICCOMSTR</CODE ></DT ><DD ><P > The string displayed when compiling stub and skeleton class files from Java classes that contain RMI implementations. If this is not set, then <A HREF="#cv-RMICCOM" ><CODE CLASS="envar" >$RMICCOM</CODE ></A > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(RMICCOMSTR = "Generating stub/skeleton class files $TARGETS from $SOURCES") </PRE ></DD ><DT ><A NAME="cv-RMICFLAGS" ></A ><CODE CLASS="envar" >RMICFLAGS</CODE ></DT ><DD ><P > General options passed to the Java RMI stub compiler. </P ></DD ><DT ><A NAME="cv-_RPATH" ></A ><CODE CLASS="envar" >_RPATH</CODE ></DT ><DD ><P > An automatically-generated construction variable containing the rpath flags to be used when linking a program with shared libraries. The value of <CODE CLASS="envar" >$_RPATH</CODE > is created by appending <CODE CLASS="envar" >$RPATHPREFIX</CODE > and <CODE CLASS="envar" >$RPATHSUFFIX</CODE > to the beginning and end of each directory in <CODE CLASS="envar" >$RPATH</CODE >. </P ></DD ><DT ><A NAME="cv-RPATH" ></A ><CODE CLASS="envar" >RPATH</CODE ></DT ><DD ><P > A list of paths to search for shared libraries when running programs. Currently only used in the GNU (gnulink), IRIX (sgilink) and Sun (sunlink) linkers. Ignored on platforms and toolchains that don't support it. Note that the paths added to RPATH are not transformed by <SPAN CLASS="application" >scons</SPAN > in any way: if you want an absolute path, you must make it absolute yourself. </P ></DD ><DT ><A NAME="cv-RPATHPREFIX" ></A ><CODE CLASS="envar" >RPATHPREFIX</CODE ></DT ><DD ><P > The prefix used to specify a directory to be searched for shared libraries when running programs. This will be appended to the beginning of each directory in the <CODE CLASS="envar" >$RPATH</CODE > construction variable when the <CODE CLASS="envar" >$_RPATH</CODE > variable is automatically generated. </P ></DD ><DT ><A NAME="cv-RPATHSUFFIX" ></A ><CODE CLASS="envar" >RPATHSUFFIX</CODE ></DT ><DD ><P > The suffix used to specify a directory to be searched for shared libraries when running programs. This will be appended to the end of each directory in the <CODE CLASS="envar" >$RPATH</CODE > construction variable when the <CODE CLASS="envar" >$_RPATH</CODE > variable is automatically generated. </P ></DD ><DT ><A NAME="cv-RPCGEN" ></A ><CODE CLASS="envar" >RPCGEN</CODE ></DT ><DD ><P > The RPC protocol compiler. </P ></DD ><DT ><A NAME="cv-RPCGENCLIENTFLAGS" ></A ><CODE CLASS="envar" >RPCGENCLIENTFLAGS</CODE ></DT ><DD ><P > Options passed to the RPC protocol compiler when generating client side stubs. These are in addition to any flags specified in the <A HREF="#cv-RPCGENFLAGS" ><CODE CLASS="envar" >$RPCGENFLAGS</CODE ></A > construction variable. </P ></DD ><DT ><A NAME="cv-RPCGENFLAGS" ></A ><CODE CLASS="envar" >RPCGENFLAGS</CODE ></DT ><DD ><P > General options passed to the RPC protocol compiler. </P ></DD ><DT ><A NAME="cv-RPCGENHEADERFLAGS" ></A ><CODE CLASS="envar" >RPCGENHEADERFLAGS</CODE ></DT ><DD ><P > Options passed to the RPC protocol compiler when generating a header file. These are in addition to any flags specified in the <A HREF="#cv-RPCGENFLAGS" ><CODE CLASS="envar" >$RPCGENFLAGS</CODE ></A > construction variable. </P ></DD ><DT ><A NAME="cv-RPCGENSERVICEFLAGS" ></A ><CODE CLASS="envar" >RPCGENSERVICEFLAGS</CODE ></DT ><DD ><P > Options passed to the RPC protocol compiler when generating server side stubs. These are in addition to any flags specified in the <A HREF="#cv-RPCGENFLAGS" ><CODE CLASS="envar" >$RPCGENFLAGS</CODE ></A > construction variable. </P ></DD ><DT ><A NAME="cv-RPCGENXDRFLAGS" ></A ><CODE CLASS="envar" >RPCGENXDRFLAGS</CODE ></DT ><DD ><P > Options passed to the RPC protocol compiler when generating XDR routines. These are in addition to any flags specified in the <A HREF="#cv-RPCGENFLAGS" ><CODE CLASS="envar" >$RPCGENFLAGS</CODE ></A > construction variable. </P ></DD ><DT ><A NAME="cv-SCANNERS" ></A ><CODE CLASS="envar" >SCANNERS</CODE ></DT ><DD ><P > A list of the available implicit dependency scanners. New file scanners may be added by appending to this list, although the more flexible approach is to associate scanners with a specific Builder. See the sections "Builder Objects" and "Scanner Objects," below, for more information. </P ></DD ><DT ><A NAME="cv-SCCS" ></A ><CODE CLASS="envar" >SCCS</CODE ></DT ><DD ><P > The SCCS executable. </P ></DD ><DT ><A NAME="cv-SCCSCOM" ></A ><CODE CLASS="envar" >SCCSCOM</CODE ></DT ><DD ><P > The command line used to fetch source files from SCCS. </P ></DD ><DT ><A NAME="cv-SCCSCOMSTR" ></A ><CODE CLASS="envar" >SCCSCOMSTR</CODE ></DT ><DD ><P > The string displayed when fetching a source file from a CVS repository. If this is not set, then <A HREF="#cv-SCCSCOM" ><CODE CLASS="envar" >$SCCSCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-SCCSFLAGS" ></A ><CODE CLASS="envar" >SCCSFLAGS</CODE ></DT ><DD ><P > General options that are passed to SCCS. </P ></DD ><DT ><A NAME="cv-SCCSGETFLAGS" ></A ><CODE CLASS="envar" >SCCSGETFLAGS</CODE ></DT ><DD ><P > Options that are passed specifically to the SCCS "get" subcommand. This can be set, for example, to <CODE CLASS="option" >-e</CODE > to check out editable files from SCCS. </P ></DD ><DT ><A NAME="cv-SCONS_HOME" ></A ><CODE CLASS="envar" >SCONS_HOME</CODE ></DT ><DD ><P > The (optional) path to the SCons library directory, initialized from the external environment. If set, this is used to construct a shorter and more efficient search path in the <A HREF="#cv-MSVSSCONS" ><CODE CLASS="envar" >$MSVSSCONS</CODE ></A > command line executed from Microsoft Visual Studio project files. </P ></DD ><DT ><A NAME="cv-SHCC" ></A ><CODE CLASS="envar" >SHCC</CODE ></DT ><DD ><P > The C compiler used for generating shared-library objects. </P ></DD ><DT ><A NAME="cv-SHCCCOM" ></A ><CODE CLASS="envar" >SHCCCOM</CODE ></DT ><DD ><P > The command line used to compile a C source file to a shared-library object file. Any options specified in the <A HREF="#cv-SHCFLAGS" ><CODE CLASS="envar" >$SHCFLAGS</CODE ></A >, <A HREF="#cv-SHCCFLAGS" ><CODE CLASS="envar" >$SHCCFLAGS</CODE ></A > and <A HREF="#cv-CPPFLAGS" ><CODE CLASS="envar" >$CPPFLAGS</CODE ></A > construction variables are included on this command line. </P ></DD ><DT ><A NAME="cv-SHCCCOMSTR" ></A ><CODE CLASS="envar" >SHCCCOMSTR</CODE ></DT ><DD ><P > The string displayed when a C source file is compiled to a shared object file. If this is not set, then <A HREF="#cv-SHCCCOM" ><CODE CLASS="envar" >$SHCCCOM</CODE ></A > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(SHCCCOMSTR = "Compiling shared object $TARGET") </PRE ></DD ><DT ><A NAME="cv-SHCCFLAGS" ></A ><CODE CLASS="envar" >SHCCFLAGS</CODE ></DT ><DD ><P > Options that are passed to the C and C++ compilers to generate shared-library objects. </P ></DD ><DT ><A NAME="cv-SHCFLAGS" ></A ><CODE CLASS="envar" >SHCFLAGS</CODE ></DT ><DD ><P > Options that are passed to the C compiler (only; not C++) to generate shared-library objects. </P ></DD ><DT ><A NAME="cv-SHCXX" ></A ><CODE CLASS="envar" >SHCXX</CODE ></DT ><DD ><P > The C++ compiler used for generating shared-library objects. </P ></DD ><DT ><A NAME="cv-SHCXXCOM" ></A ><CODE CLASS="envar" >SHCXXCOM</CODE ></DT ><DD ><P > The command line used to compile a C++ source file to a shared-library object file. Any options specified in the <A HREF="#cv-SHCXXFLAGS" ><CODE CLASS="envar" >$SHCXXFLAGS</CODE ></A > and <A HREF="#cv-CPPFLAGS" ><CODE CLASS="envar" >$CPPFLAGS</CODE ></A > construction variables are included on this command line. </P ></DD ><DT ><A NAME="cv-SHCXXCOMSTR" ></A ><CODE CLASS="envar" >SHCXXCOMSTR</CODE ></DT ><DD ><P > The string displayed when a C++ source file is compiled to a shared object file. If this is not set, then <A HREF="#cv-SHCXXCOM" ><CODE CLASS="envar" >$SHCXXCOM</CODE ></A > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(SHCXXCOMSTR = "Compiling shared object $TARGET") </PRE ></DD ><DT ><A NAME="cv-SHCXXFLAGS" ></A ><CODE CLASS="envar" >SHCXXFLAGS</CODE ></DT ><DD ><P > Options that are passed to the C++ compiler to generate shared-library objects. </P ></DD ><DT ><A NAME="cv-SHELL" ></A ><CODE CLASS="envar" >SHELL</CODE ></DT ><DD ><P > A string naming the shell program that will be passed to the <CODE CLASS="envar" >$SPAWN</CODE > function. See the <CODE CLASS="envar" >$SPAWN</CODE > construction variable for more information. </P ></DD ><DT ><A NAME="cv-SHF77" ></A ><CODE CLASS="envar" >SHF77</CODE ></DT ><DD ><P > The Fortran 77 compiler used for generating shared-library objects. You should normally set the <A HREF="#cv-SHFORTRAN" ><CODE CLASS="envar" >$SHFORTRAN</CODE ></A > variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set <A HREF="#cv-SHF77" ><CODE CLASS="envar" >$SHF77</CODE ></A > if you need to use a specific compiler or compiler version for Fortran 77 files. </P ></DD ><DT ><A NAME="cv-SHF77COM" ></A ><CODE CLASS="envar" >SHF77COM</CODE ></DT ><DD ><P > The command line used to compile a Fortran 77 source file to a shared-library object file. You only need to set <A HREF="#cv-SHF77COM" ><CODE CLASS="envar" >$SHF77COM</CODE ></A > if you need to use a specific command line for Fortran 77 files. You should normally set the <A HREF="#cv-SHFORTRANCOM" ><CODE CLASS="envar" >$SHFORTRANCOM</CODE ></A > variable, which specifies the default command line for all Fortran versions. </P ></DD ><DT ><A NAME="cv-SHF77COMSTR" ></A ><CODE CLASS="envar" >SHF77COMSTR</CODE ></DT ><DD ><P > The string displayed when a Fortran 77 source file is compiled to a shared-library object file. If this is not set, then <A HREF="#cv-SHF77COM" ><CODE CLASS="envar" >$SHF77COM</CODE ></A > or <A HREF="#cv-SHFORTRANCOM" ><CODE CLASS="envar" >$SHFORTRANCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-SHF77FLAGS" ></A ><CODE CLASS="envar" >SHF77FLAGS</CODE ></DT ><DD ><P > Options that are passed to the Fortran 77 compiler to generated shared-library objects. You only need to set <A HREF="#cv-SHF77FLAGS" ><CODE CLASS="envar" >$SHF77FLAGS</CODE ></A > if you need to define specific user options for Fortran 77 files. You should normally set the <A HREF="#cv-SHFORTRANFLAGS" ><CODE CLASS="envar" >$SHFORTRANFLAGS</CODE ></A > variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions. </P ></DD ><DT ><A NAME="cv-SHF77PPCOM" ></A ><CODE CLASS="envar" >SHF77PPCOM</CODE ></DT ><DD ><P > The command line used to compile a Fortran 77 source file to a shared-library object file after first running the file through the C preprocessor. Any options specified in the <A HREF="#cv-SHF77FLAGS" ><CODE CLASS="envar" >$SHF77FLAGS</CODE ></A > and <A HREF="#cv-CPPFLAGS" ><CODE CLASS="envar" >$CPPFLAGS</CODE ></A > construction variables are included on this command line. You only need to set <A HREF="#cv-SHF77PPCOM" ><CODE CLASS="envar" >$SHF77PPCOM</CODE ></A > if you need to use a specific C-preprocessor command line for Fortran 77 files. You should normally set the <A HREF="#cv-SHFORTRANPPCOM" ><CODE CLASS="envar" >$SHFORTRANPPCOM</CODE ></A > variable, which specifies the default C-preprocessor command line for all Fortran versions. </P ></DD ><DT ><A NAME="cv-SHF77PPCOMSTR" ></A ><CODE CLASS="envar" >SHF77PPCOMSTR</CODE ></DT ><DD ><P > The string displayed when a Fortran 77 source file is compiled to a shared-library object file after first running the file through the C preprocessor. If this is not set, then <A HREF="#cv-SHF77PPCOM" ><CODE CLASS="envar" >$SHF77PPCOM</CODE ></A > or <A HREF="#cv-SHFORTRANPPCOM" ><CODE CLASS="envar" >$SHFORTRANPPCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-SHF90" ></A ><CODE CLASS="envar" >SHF90</CODE ></DT ><DD ><P > The Fortran 90 compiler used for generating shared-library objects. You should normally set the <A HREF="#cv-SHFORTRAN" ><CODE CLASS="envar" >$SHFORTRAN</CODE ></A > variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set <A HREF="#cv-SHF90" ><CODE CLASS="envar" >$SHF90</CODE ></A > if you need to use a specific compiler or compiler version for Fortran 90 files. </P ></DD ><DT ><A NAME="cv-SHF90COM" ></A ><CODE CLASS="envar" >SHF90COM</CODE ></DT ><DD ><P > The command line used to compile a Fortran 90 source file to a shared-library object file. You only need to set <A HREF="#cv-SHF90COM" ><CODE CLASS="envar" >$SHF90COM</CODE ></A > if you need to use a specific command line for Fortran 90 files. You should normally set the <A HREF="#cv-SHFORTRANCOM" ><CODE CLASS="envar" >$SHFORTRANCOM</CODE ></A > variable, which specifies the default command line for all Fortran versions. </P ></DD ><DT ><A NAME="cv-SHF90COMSTR" ></A ><CODE CLASS="envar" >SHF90COMSTR</CODE ></DT ><DD ><P > The string displayed when a Fortran 90 source file is compiled to a shared-library object file. If this is not set, then <A HREF="#cv-SHF90COM" ><CODE CLASS="envar" >$SHF90COM</CODE ></A > or <A HREF="#cv-SHFORTRANCOM" ><CODE CLASS="envar" >$SHFORTRANCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-SHF90FLAGS" ></A ><CODE CLASS="envar" >SHF90FLAGS</CODE ></DT ><DD ><P > Options that are passed to the Fortran 90 compiler to generated shared-library objects. You only need to set <A HREF="#cv-SHF90FLAGS" ><CODE CLASS="envar" >$SHF90FLAGS</CODE ></A > if you need to define specific user options for Fortran 90 files. You should normally set the <A HREF="#cv-SHFORTRANFLAGS" ><CODE CLASS="envar" >$SHFORTRANFLAGS</CODE ></A > variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions. </P ></DD ><DT ><A NAME="cv-SHF90PPCOM" ></A ><CODE CLASS="envar" >SHF90PPCOM</CODE ></DT ><DD ><P > The command line used to compile a Fortran 90 source file to a shared-library object file after first running the file through the C preprocessor. Any options specified in the <A HREF="#cv-SHF90FLAGS" ><CODE CLASS="envar" >$SHF90FLAGS</CODE ></A > and <A HREF="#cv-CPPFLAGS" ><CODE CLASS="envar" >$CPPFLAGS</CODE ></A > construction variables are included on this command line. You only need to set <A HREF="#cv-SHF90PPCOM" ><CODE CLASS="envar" >$SHF90PPCOM</CODE ></A > if you need to use a specific C-preprocessor command line for Fortran 90 files. You should normally set the <A HREF="#cv-SHFORTRANPPCOM" ><CODE CLASS="envar" >$SHFORTRANPPCOM</CODE ></A > variable, which specifies the default C-preprocessor command line for all Fortran versions. </P ></DD ><DT ><A NAME="cv-SHF90PPCOMSTR" ></A ><CODE CLASS="envar" >SHF90PPCOMSTR</CODE ></DT ><DD ><P > The string displayed when a Fortran 90 source file is compiled to a shared-library object file after first running the file through the C preprocessor. If this is not set, then <A HREF="#cv-SHF90PPCOM" ><CODE CLASS="envar" >$SHF90PPCOM</CODE ></A > or <A HREF="#cv-SHFORTRANPPCOM" ><CODE CLASS="envar" >$SHFORTRANPPCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-SHF95" ></A ><CODE CLASS="envar" >SHF95</CODE ></DT ><DD ><P > The Fortran 95 compiler used for generating shared-library objects. You should normally set the <A HREF="#cv-SHFORTRAN" ><CODE CLASS="envar" >$SHFORTRAN</CODE ></A > variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set <A HREF="#cv-SHF95" ><CODE CLASS="envar" >$SHF95</CODE ></A > if you need to use a specific compiler or compiler version for Fortran 95 files. </P ></DD ><DT ><A NAME="cv-SHF95COM" ></A ><CODE CLASS="envar" >SHF95COM</CODE ></DT ><DD ><P > The command line used to compile a Fortran 95 source file to a shared-library object file. You only need to set <A HREF="#cv-SHF95COM" ><CODE CLASS="envar" >$SHF95COM</CODE ></A > if you need to use a specific command line for Fortran 95 files. You should normally set the <A HREF="#cv-SHFORTRANCOM" ><CODE CLASS="envar" >$SHFORTRANCOM</CODE ></A > variable, which specifies the default command line for all Fortran versions. </P ></DD ><DT ><A NAME="cv-SHF95COMSTR" ></A ><CODE CLASS="envar" >SHF95COMSTR</CODE ></DT ><DD ><P > The string displayed when a Fortran 95 source file is compiled to a shared-library object file. If this is not set, then <A HREF="#cv-SHF95COM" ><CODE CLASS="envar" >$SHF95COM</CODE ></A > or <A HREF="#cv-SHFORTRANCOM" ><CODE CLASS="envar" >$SHFORTRANCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-SHF95FLAGS" ></A ><CODE CLASS="envar" >SHF95FLAGS</CODE ></DT ><DD ><P > Options that are passed to the Fortran 95 compiler to generated shared-library objects. You only need to set <A HREF="#cv-SHF95FLAGS" ><CODE CLASS="envar" >$SHF95FLAGS</CODE ></A > if you need to define specific user options for Fortran 95 files. You should normally set the <A HREF="#cv-SHFORTRANFLAGS" ><CODE CLASS="envar" >$SHFORTRANFLAGS</CODE ></A > variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions. </P ></DD ><DT ><A NAME="cv-SHF95PPCOM" ></A ><CODE CLASS="envar" >SHF95PPCOM</CODE ></DT ><DD ><P > The command line used to compile a Fortran 95 source file to a shared-library object file after first running the file through the C preprocessor. Any options specified in the <A HREF="#cv-SHF95FLAGS" ><CODE CLASS="envar" >$SHF95FLAGS</CODE ></A > and <A HREF="#cv-CPPFLAGS" ><CODE CLASS="envar" >$CPPFLAGS</CODE ></A > construction variables are included on this command line. You only need to set <A HREF="#cv-SHF95PPCOM" ><CODE CLASS="envar" >$SHF95PPCOM</CODE ></A > if you need to use a specific C-preprocessor command line for Fortran 95 files. You should normally set the <A HREF="#cv-SHFORTRANPPCOM" ><CODE CLASS="envar" >$SHFORTRANPPCOM</CODE ></A > variable, which specifies the default C-preprocessor command line for all Fortran versions. </P ></DD ><DT ><A NAME="cv-SHF95PPCOMSTR" ></A ><CODE CLASS="envar" >SHF95PPCOMSTR</CODE ></DT ><DD ><P > The string displayed when a Fortran 95 source file is compiled to a shared-library object file after first running the file through the C preprocessor. If this is not set, then <A HREF="#cv-SHF95PPCOM" ><CODE CLASS="envar" >$SHF95PPCOM</CODE ></A > or <A HREF="#cv-SHFORTRANPPCOM" ><CODE CLASS="envar" >$SHFORTRANPPCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-SHFORTRAN" ></A ><CODE CLASS="envar" >SHFORTRAN</CODE ></DT ><DD ><P > The default Fortran compiler used for generating shared-library objects. </P ></DD ><DT ><A NAME="cv-SHFORTRANCOM" ></A ><CODE CLASS="envar" >SHFORTRANCOM</CODE ></DT ><DD ><P > The command line used to compile a Fortran source file to a shared-library object file. </P ></DD ><DT ><A NAME="cv-SHFORTRANCOMSTR" ></A ><CODE CLASS="envar" >SHFORTRANCOMSTR</CODE ></DT ><DD ><P > The string displayed when a Fortran source file is compiled to a shared-library object file. If this is not set, then <A HREF="#cv-SHFORTRANCOM" ><CODE CLASS="envar" >$SHFORTRANCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-SHFORTRANFLAGS" ></A ><CODE CLASS="envar" >SHFORTRANFLAGS</CODE ></DT ><DD ><P > Options that are passed to the Fortran compiler to generate shared-library objects. </P ></DD ><DT ><A NAME="cv-SHFORTRANPPCOM" ></A ><CODE CLASS="envar" >SHFORTRANPPCOM</CODE ></DT ><DD ><P > The command line used to compile a Fortran source file to a shared-library object file after first running the file through the C preprocessor. Any options specified in the <A HREF="#cv-SHFORTRANFLAGS" ><CODE CLASS="envar" >$SHFORTRANFLAGS</CODE ></A > and <A HREF="#cv-CPPFLAGS" ><CODE CLASS="envar" >$CPPFLAGS</CODE ></A > construction variables are included on this command line. </P ></DD ><DT ><A NAME="cv-SHFORTRANPPCOMSTR" ></A ><CODE CLASS="envar" >SHFORTRANPPCOMSTR</CODE ></DT ><DD ><P > The string displayed when a Fortran source file is compiled to a shared-library object file after first running the file throught the C preprocessor. If this is not set, then <A HREF="#cv-SHFORTRANPPCOM" ><CODE CLASS="envar" >$SHFORTRANPPCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-SHLIBPREFIX" ></A ><CODE CLASS="envar" >SHLIBPREFIX</CODE ></DT ><DD ><P > The prefix used for shared library file names. </P ></DD ><DT ><A NAME="cv-SHLIBSUFFIX" ></A ><CODE CLASS="envar" >SHLIBSUFFIX</CODE ></DT ><DD ><P > The suffix used for shared library file names. </P ></DD ><DT ><A NAME="cv-SHLINK" ></A ><CODE CLASS="envar" >SHLINK</CODE ></DT ><DD ><P > The linker for programs that use shared libraries. </P ></DD ><DT ><A NAME="cv-SHLINKCOM" ></A ><CODE CLASS="envar" >SHLINKCOM</CODE ></DT ><DD ><P > The command line used to link programs using shared libaries. </P ></DD ><DT ><A NAME="cv-SHLINKCOMSTR" ></A ><CODE CLASS="envar" >SHLINKCOMSTR</CODE ></DT ><DD ><P > The string displayed when programs using shared libraries are linked. If this is not set, then <A HREF="#cv-SHLINKCOM" ><CODE CLASS="envar" >$SHLINKCOM</CODE ></A > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(SHLINKCOMSTR = "Linking shared $TARGET") </PRE ></DD ><DT ><A NAME="cv-SHLINKFLAGS" ></A ><CODE CLASS="envar" >SHLINKFLAGS</CODE ></DT ><DD ><P > General user options passed to the linker for programs using shared libraries. Note that this variable should <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > contain <CODE CLASS="option" >-l</CODE > (or similar) options for linking with the libraries listed in <A HREF="#cv-LIBS" ><CODE CLASS="envar" >$LIBS</CODE ></A >, nor <CODE CLASS="option" >-L</CODE > (or similar) include search path options that scons generates automatically from <A HREF="#cv-LIBPATH" ><CODE CLASS="envar" >$LIBPATH</CODE ></A >. See <A HREF="#cv-_LIBFLAGS" ><CODE CLASS="envar" >$_LIBFLAGS</CODE ></A > above, for the variable that expands to library-link options, and <A HREF="#cv-_LIBDIRFLAGS" ><CODE CLASS="envar" >$_LIBDIRFLAGS</CODE ></A > above, for the variable that expands to library search path options. </P ></DD ><DT ><A NAME="cv-SHOBJPREFIX" ></A ><CODE CLASS="envar" >SHOBJPREFIX</CODE ></DT ><DD ><P > The prefix used for shared object file names. </P ></DD ><DT ><A NAME="cv-SHOBJSUFFIX" ></A ><CODE CLASS="envar" >SHOBJSUFFIX</CODE ></DT ><DD ><P > The suffix used for shared object file names. </P ></DD ><DT ><A NAME="cv-SOURCE" ></A ><CODE CLASS="envar" >SOURCE</CODE ></DT ><DD ><P > A reserved variable name that may not be set or used in a construction environment. (See "Variable Substitution," below.) </P ></DD ><DT ><A NAME="cv-SOURCE_URL" ></A ><CODE CLASS="envar" >SOURCE_URL</CODE ></DT ><DD ><P > The URL (web address) of the location from which the project was retrieved. This is used to fill in the <TT CLASS="literal" >Source:</TT > field in the controlling information for Ipkg and RPM packages. </P ></DD ><DT ><A NAME="cv-SOURCES" ></A ><CODE CLASS="envar" >SOURCES</CODE ></DT ><DD ><P > A reserved variable name that may not be set or used in a construction environment. (See "Variable Substitution," below.) </P ></DD ><DT ><A NAME="cv-SPAWN" ></A ><CODE CLASS="envar" >SPAWN</CODE ></DT ><DD ><P > A command interpreter function that will be called to execute command line strings. The function must expect the following arguments: </P ><PRE CLASS="programlisting" > def spawn(shell, escape, cmd, args, env): </PRE ><P > <CODE CLASS="varname" >sh</CODE > is a string naming the shell program to use. <CODE CLASS="varname" >escape</CODE > is a function that can be called to escape shell special characters in the command line. <CODE CLASS="varname" >cmd</CODE > is the path to the command to be executed. <CODE CLASS="varname" >args</CODE > is the arguments to the command. <CODE CLASS="varname" >env</CODE > is a dictionary of the environment variables in which the command should be executed. </P ></DD ><DT ><A NAME="cv-SUMMARY" ></A ><CODE CLASS="envar" >SUMMARY</CODE ></DT ><DD ><P > A short summary of what the project is about. This is used to fill in the <TT CLASS="literal" >Summary:</TT > field in the controlling information for Ipkg and RPM packages, and as the <TT CLASS="literal" >Description:</TT > field in MSI packages. </P ></DD ><DT ><A NAME="cv-SWIG" ></A ><CODE CLASS="envar" >SWIG</CODE ></DT ><DD ><P > The scripting language wrapper and interface generator. </P ></DD ><DT ><A NAME="cv-SWIGCFILESUFFIX" ></A ><CODE CLASS="envar" >SWIGCFILESUFFIX</CODE ></DT ><DD ><P > The suffix that will be used for intermediate C source files generated by the scripting language wrapper and interface generator. The default value is <TT CLASS="filename" >_wrap</TT ><A HREF="#cv-CFILESUFFIX" ><CODE CLASS="envar" >$CFILESUFFIX</CODE ></A >. By default, this value is used whenever the <CODE CLASS="option" >-c++</CODE > option is <SPAN CLASS="emphasis" ><I CLASS="emphasis" >not</I ></SPAN > specified as part of the <A HREF="#cv-SWIGFLAGS" ><CODE CLASS="envar" >$SWIGFLAGS</CODE ></A > construction variable. </P ></DD ><DT ><A NAME="cv-SWIGCOM" ></A ><CODE CLASS="envar" >SWIGCOM</CODE ></DT ><DD ><P > The command line used to call the scripting language wrapper and interface generator. </P ></DD ><DT ><A NAME="cv-SWIGCOMSTR" ></A ><CODE CLASS="envar" >SWIGCOMSTR</CODE ></DT ><DD ><P > The string displayed when calling the scripting language wrapper and interface generator. If this is not set, then <A HREF="#cv-SWIGCOM" ><CODE CLASS="envar" >$SWIGCOM</CODE ></A > (the command line) is displayed. </P ></DD ><DT ><A NAME="cv-SWIGCXXFILESUFFIX" ></A ><CODE CLASS="envar" >SWIGCXXFILESUFFIX</CODE ></DT ><DD ><P > The suffix that will be used for intermediate C++ source files generated by the scripting language wrapper and interface generator. The default value is <TT CLASS="filename" >_wrap</TT ><A HREF="#cv-CFILESUFFIX" ><CODE CLASS="envar" >$CFILESUFFIX</CODE ></A >. By default, this value is used whenever the <TT CLASS="filename" >-c++</TT > option is specified as part of the <A HREF="#cv-SWIGFLAGS" ><CODE CLASS="envar" >$SWIGFLAGS</CODE ></A > construction variable. </P ></DD ><DT ><A NAME="cv-SWIGFLAGS" ></A ><CODE CLASS="envar" >SWIGFLAGS</CODE ></DT ><DD ><P > General options passed to the scripting language wrapper and interface generator. This is where you should set <CODE CLASS="option" >-python</CODE >, <CODE CLASS="option" >-perl5</CODE >, <CODE CLASS="option" >-tcl</CODE >, or whatever other options you want to specify to SWIG. If you set the <CODE CLASS="option" >-c++</CODE > option in this variable, <SPAN CLASS="application" >scons</SPAN > will, by default, generate a C++ intermediate source file with the extension that is specified as the <A HREF="#cv-CXXFILESUFFIX" ><CODE CLASS="envar" >$CXXFILESUFFIX</CODE ></A > variable. </P ></DD ><DT ><A NAME="cv-_SWIGINCFLAGS" ></A ><CODE CLASS="envar" >_SWIGINCFLAGS</CODE ></DT ><DD ><P > An automatically-generated construction variable containing the SWIG command-line options for specifying directories to be searched for included files. The value of <CODE CLASS="envar" >$_SWIGINCFLAGS</CODE > is created by appending <CODE CLASS="envar" >$SWIGINCPREFIX</CODE > and <CODE CLASS="envar" >$SWIGINCSUFFIX</CODE > to the beginning and end of each directory in <CODE CLASS="envar" >$SWIGPATH</CODE >. </P ></DD ><DT ><A NAME="cv-SWIGINCPREFIX" ></A ><CODE CLASS="envar" >SWIGINCPREFIX</CODE ></DT ><DD ><P > The prefix used to specify an include directory on the SWIG command line. This will be appended to the beginning of each directory in the <CODE CLASS="envar" >$SWIGPATH</CODE > construction variable when the <CODE CLASS="envar" >$_SWIGINCFLAGS</CODE > variable is automatically generated. </P ></DD ><DT ><A NAME="cv-SWIGINCSUFFIX" ></A ><CODE CLASS="envar" >SWIGINCSUFFIX</CODE ></DT ><DD ><P > The suffix used to specify an include directory on the SWIG command line. This will be appended to the end of each directory in the <CODE CLASS="envar" >$SWIGPATH</CODE > construction variable when the <CODE CLASS="envar" >$_SWIGINCFLAGS</CODE > variable is automatically generated. </P ></DD ><DT ><A NAME="cv-SWIGOUTDIR" ></A ><CODE CLASS="envar" >SWIGOUTDIR</CODE ></DT ><DD ><P > Specifies the output directory in which the scripting language wrapper and interface generator should place generated language-specific files. This will be used by SCons to identify the files that will be generated by the <SPAN CLASS="application" >swig</SPAN > call, and translated into the <TT CLASS="literal" >swig -outdir</TT > option on the command line. </P ></DD ><DT ><A NAME="cv-SWIGPATH" ></A ><CODE CLASS="envar" >SWIGPATH</CODE ></DT ><DD ><P > The list of directories that the scripting language wrapper and interface generate will search for included files. The SWIG implicit dependency scanner will search these directories for include files. The default is to use the same path specified as <CODE CLASS="envar" >$CPPPATH</CODE >.</P ><P >Don't explicitly put include directory arguments in SWIGFLAGS; the result will be non-portable and the directories will not be searched by the dependency scanner. Note: directory names in SWIGPATH will be looked-up relative to the SConscript directory when they are used in a command. To force <SPAN CLASS="application" >scons</SPAN > to look-up a directory relative to the root of the source tree use #: </P ><PRE CLASS="programlisting" > env = Environment(SWIGPATH='#/include') </PRE ><P > The directory look-up can also be forced using the <CODE CLASS="function" >Dir</CODE >() function: </P ><PRE CLASS="programlisting" > include = Dir('include') env = Environment(SWIGPATH=include) </PRE ><P > The directory list will be added to command lines through the automatically-generated <CODE CLASS="envar" >$_SWIGINCFLAGS</CODE > construction variable, which is constructed by appending the values of the <CODE CLASS="envar" >$SWIGINCPREFIX</CODE > and <CODE CLASS="envar" >$SWIGINCSUFFIX</CODE > construction variables to the beginning and end of each directory in <CODE CLASS="envar" >$SWIGPATH</CODE >. Any command lines you define that need the SWIGPATH directory list should include <CODE CLASS="envar" >$_SWIGINCFLAGS</CODE >: </P ><PRE CLASS="programlisting" > env = Environment(SWIGCOM="my_swig -o $TARGET $_SWIGINCFLAGS $SORUCES") </PRE ></DD ><DT ><A NAME="cv-TAR" ></A ><CODE CLASS="envar" >TAR</CODE ></DT ><DD ><P > The tar archiver. </P ></DD ><DT ><A NAME="cv-TARCOM" ></A ><CODE CLASS="envar" >TARCOM</CODE ></DT ><DD ><P > The command line used to call the tar archiver. </P ></DD ><DT ><A NAME="cv-TARCOMSTR" ></A ><CODE CLASS="envar" >TARCOMSTR</CODE ></DT ><DD ><P > The string displayed when archiving files using the tar archiver. If this is not set, then <A HREF="#cv-TARCOM" ><CODE CLASS="envar" >$TARCOM</CODE ></A > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(TARCOMSTR = "Archiving $TARGET") </PRE ></DD ><DT ><A NAME="cv-TARFLAGS" ></A ><CODE CLASS="envar" >TARFLAGS</CODE ></DT ><DD ><P > General options passed to the tar archiver. </P ></DD ><DT ><A NAME="cv-TARGET" ></A ><CODE CLASS="envar" >TARGET</CODE ></DT ><DD ><P > A reserved variable name that may not be set or used in a construction environment. (See "Variable Substitution," below.) </P ></DD ><DT ><A NAME="cv-TARGETS" ></A ><CODE CLASS="envar" >TARGETS</CODE ></DT ><DD ><P > A reserved variable name that may not be set or used in a construction environment. (See "Variable Substitution," below.) </P ></DD ><DT ><A NAME="cv-TARSUFFIX" ></A ><CODE CLASS="envar" >TARSUFFIX</CODE ></DT ><DD ><P > The suffix used for tar file names. </P ></DD ><DT ><A NAME="cv-TEMPFILEPREFIX" ></A ><CODE CLASS="envar" >TEMPFILEPREFIX</CODE ></DT ><DD ><P > The prefix for a temporary file used to execute lines longer than $MAXLINELENGTH. The default is '@'. This may be set for toolchains that use other values, such as '-@' for the diab compiler or '-via' for ARM toolchain. </P ></DD ><DT ><A NAME="cv-TEX" ></A ><CODE CLASS="envar" >TEX</CODE ></DT ><DD ><P > The TeX formatter and typesetter. </P ></DD ><DT ><A NAME="cv-TEXCOM" ></A ><CODE CLASS="envar" >TEXCOM</CODE ></DT ><DD ><P > The command line used to call the TeX formatter and typesetter. </P ></DD ><DT ><A NAME="cv-TEXCOMSTR" ></A ><CODE CLASS="envar" >TEXCOMSTR</CODE ></DT ><DD ><P > The string displayed when calling the TeX formatter and typesetter. If this is not set, then <A HREF="#cv-TEXCOM" ><CODE CLASS="envar" >$TEXCOM</CODE ></A > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(TEXCOMSTR = "Building $TARGET from TeX input $SOURCES") </PRE ></DD ><DT ><A NAME="cv-TEXFLAGS" ></A ><CODE CLASS="envar" >TEXFLAGS</CODE ></DT ><DD ><P > General options passed to the TeX formatter and typesetter. </P ></DD ><DT ><A NAME="cv-TEXINPUTS" ></A ><CODE CLASS="envar" >TEXINPUTS</CODE ></DT ><DD ><P > List of directories that the LaTeX programm will search for include directories. The LaTeX implicit dependency scanner will search these directories for \include and \import files. </P ></DD ><DT ><A NAME="cv-TOOLS" ></A ><CODE CLASS="envar" >TOOLS</CODE ></DT ><DD ><P > A list of the names of the Tool specifications that are part of this construction environment. </P ></DD ><DT ><A NAME="cv-VENDOR" ></A ><CODE CLASS="envar" >VENDOR</CODE ></DT ><DD ><P > The person or organization who supply the packaged software. This is used to fill in the <TT CLASS="literal" >Vendor:</TT > field in the controlling information for RPM packages, and the <TT CLASS="literal" >Manufacturer:</TT > field in the controlling information for MSI packages. </P ></DD ><DT ><A NAME="cv-VERSION" ></A ><CODE CLASS="envar" >VERSION</CODE ></DT ><DD ><P > The version of the project, specified as a string. </P ></DD ><DT ><A NAME="cv-WIN32_INSERT_DEF" ></A ><CODE CLASS="envar" >WIN32_INSERT_DEF</CODE ></DT ><DD ><P > A deprecated synonym for <A HREF="#cv-WINDOWS_INSERT_DEF" ><CODE CLASS="envar" >$WINDOWS_INSERT_DEF</CODE ></A >. </P ></DD ><DT ><A NAME="cv-WIN32DEFPREFIX" ></A ><CODE CLASS="envar" >WIN32DEFPREFIX</CODE ></DT ><DD ><P > A deprecated synonym for <A HREF="#cv-WINDOWSDEFPREFIX" ><CODE CLASS="envar" >$WINDOWSDEFPREFIX</CODE ></A >. </P ></DD ><DT ><A NAME="cv-WIN32DEFSUFFIX" ></A ><CODE CLASS="envar" >WIN32DEFSUFFIX</CODE ></DT ><DD ><P > A deprecated synonym for <A HREF="#cv-WINDOWSDEFSUFFIX" ><CODE CLASS="envar" >$WINDOWSDEFSUFFIX</CODE ></A >. </P ></DD ><DT ><A NAME="cv-WIN32EXPPREFIX" ></A ><CODE CLASS="envar" >WIN32EXPPREFIX</CODE ></DT ><DD ><P > A deprecated synonym for <A HREF="#cv-WINDOWSEXPSUFFIX" ><CODE CLASS="envar" >$WINDOWSEXPSUFFIX</CODE ></A >. </P ></DD ><DT ><A NAME="cv-WIN32EXPSUFFIX" ></A ><CODE CLASS="envar" >WIN32EXPSUFFIX</CODE ></DT ><DD ><P > A deprecated synonym for <A HREF="#cv-WINDOWSEXPSUFFIX" ><CODE CLASS="envar" >$WINDOWSEXPSUFFIX</CODE ></A >. </P ></DD ><DT ><A NAME="cv-WINDOWS_INSERT_DEF" ></A ><CODE CLASS="envar" >WINDOWS_INSERT_DEF</CODE ></DT ><DD ><P > When this is set to true, a library build of a Windows shared library (<TT CLASS="filename" >.dll</TT >file) will also build a corresponding <TT CLASS="filename" >.def</TT > file at the same time, if a <TT CLASS="filename" >.def</TT > file is not already listed as a build target. The default is 0 (do not build a <TT CLASS="filename" >.def</TT > file). </P ></DD ><DT ><A NAME="cv-WINDOWS_INSERT_MANIFEST" ></A ><CODE CLASS="envar" >WINDOWS_INSERT_MANIFEST</CODE ></DT ><DD ><P > When this is set to true, <SPAN CLASS="application" >scons</SPAN > will be aware of the <TT CLASS="filename" >.manifest</TT > files generated by Microsoft Visua C/C++ 8. </P ></DD ><DT ><A NAME="cv-WINDOWSDEFPREFIX" ></A ><CODE CLASS="envar" >WINDOWSDEFPREFIX</CODE ></DT ><DD ><P > The prefix used for Windows <TT CLASS="filename" >.def</TT >file names. </P ></DD ><DT ><A NAME="cv-WINDOWSDEFSUFFIX" ></A ><CODE CLASS="envar" >WINDOWSDEFSUFFIX</CODE ></DT ><DD ><P > The suffix used for Windows <TT CLASS="filename" >.def</TT > file names. </P ></DD ><DT ><A NAME="cv-WINDOWSEXPPREFIX" ></A ><CODE CLASS="envar" >WINDOWSEXPPREFIX</CODE ></DT ><DD ><P > The prefix used for Windows <TT CLASS="filename" >.exp</TT > file names. </P ></DD ><DT ><A NAME="cv-WINDOWSEXPSUFFIX" ></A ><CODE CLASS="envar" >WINDOWSEXPSUFFIX</CODE ></DT ><DD ><P > The suffix used for Windows <TT CLASS="filename" >.exp</TT > file names. </P ></DD ><DT ><A NAME="cv-WINDOWSPROGMANIFESTPREFIX" ></A ><CODE CLASS="envar" >WINDOWSPROGMANIFESTPREFIX</CODE ></DT ><DD ><P > The prefix used for executable program <TT CLASS="filename" >.manifest</TT > files generated by Microsoft Visual C/C++. </P ></DD ><DT ><A NAME="cv-WINDOWSPROGMANIFESTSUFFIX" ></A ><CODE CLASS="envar" >WINDOWSPROGMANIFESTSUFFIX</CODE ></DT ><DD ><P > The suffix used for executable program <TT CLASS="filename" >.manifest</TT > files generated by Microsoft Visual C/C++. </P ></DD ><DT ><A NAME="cv-WINDOWSSHLIBMANIFESTPREFIX" ></A ><CODE CLASS="envar" >WINDOWSSHLIBMANIFESTPREFIX</CODE ></DT ><DD ><P > The prefix used for shared library <TT CLASS="filename" >.manifest</TT > files generated by Microsoft Visual C/C++. </P ></DD ><DT ><A NAME="cv-WINDOWSSHLIBMANIFESTSUFFIX" ></A ><CODE CLASS="envar" >WINDOWSSHLIBMANIFESTSUFFIX</CODE ></DT ><DD ><P > The suffix used for shared library <TT CLASS="filename" >.manifest</TT > files generated by Microsoft Visual C/C++. </P ></DD ><DT ><A NAME="cv-X_IPK_DEPENDS" ></A ><CODE CLASS="envar" >X_IPK_DEPENDS</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >Depends:</TT > field in the controlling information for Ipkg packages. </P ></DD ><DT ><A NAME="cv-X_IPK_DESCRIPTION" ></A ><CODE CLASS="envar" >X_IPK_DESCRIPTION</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >Description:</TT > field in the controlling information for Ipkg packages. The default value is <TT CLASS="literal" >$SUMMARY\n$DESCRIPTION</TT > </P ></DD ><DT ><A NAME="cv-X_IPK_MAINTAINER" ></A ><CODE CLASS="envar" >X_IPK_MAINTAINER</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >Maintainer:</TT > field in the controlling information for Ipkg packages. </P ></DD ><DT ><A NAME="cv-X_IPK_PRIORITY" ></A ><CODE CLASS="envar" >X_IPK_PRIORITY</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >Priority:</TT > field in the controlling information for Ipkg packages. </P ></DD ><DT ><A NAME="cv-X_IPK_SECTION" ></A ><CODE CLASS="envar" >X_IPK_SECTION</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >Section:</TT > field in the controlling information for Ipkg packages. </P ></DD ><DT ><A NAME="cv-X_MSI_LANGUAGE" ></A ><CODE CLASS="envar" >X_MSI_LANGUAGE</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >Language:</TT > attribute in the controlling information for MSI packages. </P ></DD ><DT ><A NAME="cv-X_MSI_LICENSE_TEXT" ></A ><CODE CLASS="envar" >X_MSI_LICENSE_TEXT</CODE ></DT ><DD ><P > The text of the software license in RTF format. Carriage return characters will be replaced with the RTF equivalent \\par. </P ></DD ><DT ><A NAME="cv-X_MSI_UPGRADE_CODE" ></A ><CODE CLASS="envar" >X_MSI_UPGRADE_CODE</CODE ></DT ><DD ><P > TODO </P ></DD ><DT ><A NAME="cv-X_RPM_AUTOREQPROV" ></A ><CODE CLASS="envar" >X_RPM_AUTOREQPROV</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >AutoReqProv:</TT > field in the RPM <TT CLASS="filename" >.spec</TT > file. </P ></DD ><DT ><A NAME="cv-X_RPM_BUILD" ></A ><CODE CLASS="envar" >X_RPM_BUILD</CODE ></DT ><DD ><P > internal, but overridable </P ></DD ><DT ><A NAME="cv-X_RPM_BUILDREQUIRES" ></A ><CODE CLASS="envar" >X_RPM_BUILDREQUIRES</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >BuildRequires:</TT > field in the RPM <TT CLASS="filename" >.spec</TT > file. </P ></DD ><DT ><A NAME="cv-X_RPM_BUILDROOT" ></A ><CODE CLASS="envar" >X_RPM_BUILDROOT</CODE ></DT ><DD ><P > internal, but overridable </P ></DD ><DT ><A NAME="cv-X_RPM_CLEAN" ></A ><CODE CLASS="envar" >X_RPM_CLEAN</CODE ></DT ><DD ><P > internal, but overridable </P ></DD ><DT ><A NAME="cv-X_RPM_CONFLICTS" ></A ><CODE CLASS="envar" >X_RPM_CONFLICTS</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >Conflicts:</TT > field in the RPM <TT CLASS="filename" >.spec</TT > file. </P ></DD ><DT ><A NAME="cv-X_RPM_DEFATTR" ></A ><CODE CLASS="envar" >X_RPM_DEFATTR</CODE ></DT ><DD ><P > This value is used as the default attributes for the files in the RPM package. The default value is <TT CLASS="literal" >(-,root,root)</TT >. </P ></DD ><DT ><A NAME="cv-X_RPM_DISTRIBUTION" ></A ><CODE CLASS="envar" >X_RPM_DISTRIBUTION</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >Distribution:</TT > field in the RPM <TT CLASS="filename" >.spec</TT > file. </P ></DD ><DT ><A NAME="cv-X_RPM_EPOCH" ></A ><CODE CLASS="envar" >X_RPM_EPOCH</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >Epoch:</TT > field in the controlling information for RPM packages. </P ></DD ><DT ><A NAME="cv-X_RPM_EXCLUDEARCH" ></A ><CODE CLASS="envar" >X_RPM_EXCLUDEARCH</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >ExcludeArch:</TT > field in the RPM <TT CLASS="filename" >.spec</TT > file. </P ></DD ><DT ><A NAME="cv-X_RPM_EXLUSIVEARCH" ></A ><CODE CLASS="envar" >X_RPM_EXLUSIVEARCH</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >ExclusiveArch:</TT > field in the RPM <TT CLASS="filename" >.spec</TT > file. </P ></DD ><DT ><A NAME="cv-X_RPM_GROUP" ></A ><CODE CLASS="envar" >X_RPM_GROUP</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >Group:</TT > field in the RPM <TT CLASS="filename" >.spec</TT > file. </P ></DD ><DT ><A NAME="cv-X_RPM_GROUP_lang" ></A ><CODE CLASS="envar" >X_RPM_GROUP_lang</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >Group(lang):</TT > field in the RPM <TT CLASS="filename" >.spec</TT > file. Note that <CODE CLASS="varname" >lang</CODE > is not literal and should be replaced by the appropriate language code. </P ></DD ><DT ><A NAME="cv-X_RPM_ICON" ></A ><CODE CLASS="envar" >X_RPM_ICON</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >Icon:</TT > field in the RPM <TT CLASS="filename" >.spec</TT > file. </P ></DD ><DT ><A NAME="cv-X_RPM_INSTALL" ></A ><CODE CLASS="envar" >X_RPM_INSTALL</CODE ></DT ><DD ><P > internal, but overridable </P ></DD ><DT ><A NAME="cv-X_RPM_PACKAGER" ></A ><CODE CLASS="envar" >X_RPM_PACKAGER</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >Packager:</TT > field in the RPM <TT CLASS="filename" >.spec</TT > file. </P ></DD ><DT ><A NAME="cv-X_RPM_POSTINSTALL" ></A ><CODE CLASS="envar" >X_RPM_POSTINSTALL</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >%post:</TT > section in the RPM <TT CLASS="filename" >.spec</TT > file. </P ></DD ><DT ><A NAME="cv-X_RPM_POSTUNINSTALL" ></A ><CODE CLASS="envar" >X_RPM_POSTUNINSTALL</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >%postun:</TT > section in the RPM <TT CLASS="filename" >.spec</TT > file. </P ></DD ><DT ><A NAME="cv-X_RPM_PREFIX" ></A ><CODE CLASS="envar" >X_RPM_PREFIX</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >Prefix:</TT > field in the RPM <TT CLASS="filename" >.spec</TT > file. </P ></DD ><DT ><A NAME="cv-X_RPM_PREINSTALL" ></A ><CODE CLASS="envar" >X_RPM_PREINSTALL</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >%pre:</TT > section in the RPM <TT CLASS="filename" >.spec</TT > file. </P ></DD ><DT ><A NAME="cv-X_RPM_PREP" ></A ><CODE CLASS="envar" >X_RPM_PREP</CODE ></DT ><DD ><P > internal, but overridable </P ></DD ><DT ><A NAME="cv-X_RPM_PREUNINSTALL" ></A ><CODE CLASS="envar" >X_RPM_PREUNINSTALL</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >%preun:</TT > section in the RPM <TT CLASS="filename" >.spec</TT > file. </P ></DD ><DT ><A NAME="cv-X_RPM_PROVIDES" ></A ><CODE CLASS="envar" >X_RPM_PROVIDES</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >Provides:</TT > field in the RPM <TT CLASS="filename" >.spec</TT > file. </P ></DD ><DT ><A NAME="cv-X_RPM_REQUIRES" ></A ><CODE CLASS="envar" >X_RPM_REQUIRES</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >Requires:</TT > field in the RPM <TT CLASS="filename" >.spec</TT > file. </P ></DD ><DT ><A NAME="cv-X_RPM_SERIAL" ></A ><CODE CLASS="envar" >X_RPM_SERIAL</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >Serial:</TT > field in the RPM <TT CLASS="filename" >.spec</TT > file. </P ></DD ><DT ><A NAME="cv-X_RPM_URL" ></A ><CODE CLASS="envar" >X_RPM_URL</CODE ></DT ><DD ><P > This is used to fill in the <TT CLASS="literal" >Url:</TT > field in the RPM <TT CLASS="filename" >.spec</TT > file. </P ></DD ><DT ><A NAME="cv-YACC" ></A ><CODE CLASS="envar" >YACC</CODE ></DT ><DD ><P > The parser generator. </P ></DD ><DT ><A NAME="cv-YACCCOM" ></A ><CODE CLASS="envar" >YACCCOM</CODE ></DT ><DD ><P > The command line used to call the parser generator to generate a source file. </P ></DD ><DT ><A NAME="cv-YACCCOMSTR" ></A ><CODE CLASS="envar" >YACCCOMSTR</CODE ></DT ><DD ><P > The string displayed when generating a source file using the parser generator. If this is not set, then <A HREF="#cv-YACCCOM" ><CODE CLASS="envar" >$YACCCOM</CODE ></A > (the command line) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(YACCCOMSTR = "Yacc'ing $TARGET from $SOURCES") </PRE ></DD ><DT ><A NAME="cv-YACCFLAGS" ></A ><CODE CLASS="envar" >YACCFLAGS</CODE ></DT ><DD ><P > General options passed to the parser generator. If <A HREF="#cv-YACCFLAGS" ><CODE CLASS="envar" >$YACCFLAGS</CODE ></A > contains a <CODE CLASS="option" >-d</CODE > option, SCons assumes that the call will also create a .h file (if the yacc source file ends in a .y suffix) or a .hpp file (if the yacc source file ends in a .yy suffix) </P ></DD ><DT ><A NAME="cv-YACCHFILESUFFIX" ></A ><CODE CLASS="envar" >YACCHFILESUFFIX</CODE ></DT ><DD ><P > The suffix of the C header file generated by the parser generator when the <CODE CLASS="option" >-d</CODE > option is used. Note that setting this variable does not cause the parser generator to generate a header file with the specified suffix, it exists to allow you to specify what suffix the parser generator will use of its own accord. The default value is <TT CLASS="filename" >.h</TT >. </P ></DD ><DT ><A NAME="cv-YACCHXXFILESUFFIX" ></A ><CODE CLASS="envar" >YACCHXXFILESUFFIX</CODE ></DT ><DD ><P > The suffix of the C++ header file generated by the parser generator when the <CODE CLASS="option" >-d</CODE > option is used. Note that setting this variable does not cause the parser generator to generate a header file with the specified suffix, it exists to allow you to specify what suffix the parser generator will use of its own accord. The default value is <TT CLASS="filename" >.hpp</TT >, except on Mac OS X, where the default is <TT CLASS="filename" >${TARGET.suffix}.h</TT >. because the default <SPAN CLASS="application" >bison</SPAN > parser generator just appends <TT CLASS="filename" >.h</TT > to the name of the generated C++ file. </P ></DD ><DT ><A NAME="cv-YACCVCGFILESUFFIX" ></A ><CODE CLASS="envar" >YACCVCGFILESUFFIX</CODE ></DT ><DD ><P > The suffix of the file containing the VCG grammar automaton definition when the <CODE CLASS="option" >--graph=</CODE > option is used. Note that setting this variable does not cause the parser generator to generate a VCG file with the specified suffix, it exists to allow you to specify what suffix the parser generator will use of its own accord. The default value is <TT CLASS="filename" >.vcg</TT >. </P ></DD ><DT ><A NAME="cv-ZIP" ></A ><CODE CLASS="envar" >ZIP</CODE ></DT ><DD ><P > The zip compression and file packaging utility. </P ></DD ><DT ><A NAME="cv-ZIPCOM" ></A ><CODE CLASS="envar" >ZIPCOM</CODE ></DT ><DD ><P > The command line used to call the zip utility, or the internal Python function used to create a zip archive. </P ></DD ><DT ><A NAME="cv-ZIPCOMPRESSION" ></A ><CODE CLASS="envar" >ZIPCOMPRESSION</CODE ></DT ><DD ><P > The <CODE CLASS="varname" >compression</CODE > flag from the Python <TT CLASS="filename" >zipfile</TT > module used by the internal Python function to control whether the zip archive is compressed or not. The default value is <TT CLASS="literal" >zipfile.ZIP_DEFLATED</TT >, which creates a compressed zip archive. This value has no effect when using Python 1.5.2 or if the <TT CLASS="literal" >zipfile</TT > module is otherwise unavailable. </P ></DD ><DT ><A NAME="cv-ZIPCOMSTR" ></A ><CODE CLASS="envar" >ZIPCOMSTR</CODE ></DT ><DD ><P > The string displayed when archiving files using the zip utility. If this is not set, then <A HREF="#cv-ZIPCOM" ><CODE CLASS="envar" >$ZIPCOM</CODE ></A > (the command line or internal Python function) is displayed. </P ><PRE CLASS="programlisting" > env = Environment(ZIPCOMSTR = "Zipping $TARGET") </PRE ></DD ><DT ><A NAME="cv-ZIPFLAGS" ></A ><CODE CLASS="envar" >ZIPFLAGS</CODE ></DT ><DD ><P > General options passed to the zip utility. </P ></DD ><DT ><A NAME="cv-ZIPSUFFIX" ></A ><CODE CLASS="envar" >ZIPSUFFIX</CODE ></DT ><DD ><P > The suffix used for zip file names. </P ></DD ></DL ></DIV ></DIV ><DIV CLASS="appendix" ><HR><H1 ><A NAME="app-builders" ></A >Appendix B. Builders</H1 ><P > This appendix contains descriptions of all of the Builders that are <SPAN CLASS="emphasis" ><I CLASS="emphasis" >potentially</I ></SPAN > available "out of the box" in this version of SCons. </P ><P ></P ><DIV CLASS="variablelist" ><DL ><DT ><A NAME="b-CFile" ></A ><CODE CLASS="function" >CFile()</CODE >, <CODE CLASS="function" >env.CFile()</CODE ></DT ><DD ><P > Builds a C source file given a lex (<TT CLASS="filename" >.l</TT >) or yacc (<TT CLASS="filename" >.y</TT >) input file. The suffix specified by the <A HREF="#cv-CFILESUFFIX" ><CODE CLASS="envar" >$CFILESUFFIX</CODE ></A > construction variable (<TT CLASS="filename" >.c</TT > by default) is automatically added to the target if it is not already present. Example: </P ><PRE CLASS="programlisting" > # builds foo.c env.CFile(target = 'foo.c', source = 'foo.l') # builds bar.c env.CFile(target = 'bar', source = 'bar.y') </PRE ></DD ><DT ><A NAME="b-CXXFile" ></A ><CODE CLASS="function" >CXXFile()</CODE >, <CODE CLASS="function" >env.CXXFile()</CODE ></DT ><DD ><P > Builds a C++ source file given a lex (<TT CLASS="filename" >.ll</TT >) or yacc (<TT CLASS="filename" >.yy</TT >) input file. The suffix specified by the <A HREF="#cv-CXXFILESUFFIX" ><CODE CLASS="envar" >$CXXFILESUFFIX</CODE ></A > construction variable (<TT CLASS="filename" >.cc</TT > by default) is automatically added to the target if it is not already present. Example: </P ><PRE CLASS="programlisting" > # builds foo.cc env.CXXFile(target = 'foo.cc', source = 'foo.ll') # builds bar.cc env.CXXFile(target = 'bar', source = 'bar.yy') </PRE ></DD ><DT ><A NAME="b-DVI" ></A ><CODE CLASS="function" >DVI()</CODE >, <CODE CLASS="function" >env.DVI()</CODE ></DT ><DD ><P > Builds a <TT CLASS="filename" >.dvi</TT > file from a <TT CLASS="filename" >.tex</TT >, <TT CLASS="filename" >.ltx</TT > or <TT CLASS="filename" >.latex</TT > input file. If the source file suffix is <TT CLASS="filename" >.tex</TT >, <SPAN CLASS="application" >scons</SPAN > will examine the contents of the file; if the string <TT CLASS="literal" >\documentclass</TT > or <TT CLASS="literal" >\documentstyle</TT > is found, the file is assumed to be a LaTeX file and the target is built by invoking the <A HREF="#cv-LATEXCOM" ><CODE CLASS="envar" >$LATEXCOM</CODE ></A > command line; otherwise, the <A HREF="#cv-TEXCOM" ><CODE CLASS="envar" >$TEXCOM</CODE ></A > command line is used. If the file is a LaTeX file, the <CODE CLASS="function" >DVI</CODE > builder method will also examine the contents of the <TT CLASS="filename" >.aux</TT > file and invoke the <A HREF="#cv-BIBTEX" ><CODE CLASS="envar" >$BIBTEX</CODE ></A > command line if the string <TT CLASS="literal" >bibdata</TT > is found, start <A HREF="#cv-MAKEINDEX" ><CODE CLASS="envar" >$MAKEINDEX</CODE ></A > to generate an index if a <TT CLASS="filename" >.ind</TT > file is found and will examine the contents <TT CLASS="filename" >.log</TT > file and re-run the <A HREF="#cv-LATEXCOM" ><CODE CLASS="envar" >$LATEXCOM</CODE ></A > command if the log file says it is necessary.</P ><P >The suffix <TT CLASS="filename" >.dvi</TT > (hard-coded within TeX itself) is automatically added to the target if it is not already present. Examples: </P ><PRE CLASS="programlisting" > # builds from aaa.tex env.DVI(target = 'aaa.dvi', source = 'aaa.tex') # builds bbb.dvi env.DVI(target = 'bbb', source = 'bbb.ltx') # builds from ccc.latex env.DVI(target = 'ccc.dvi', source = 'ccc.latex') </PRE ></DD ><DT ><A NAME="b-Install" ></A ><CODE CLASS="function" >Install()</CODE >, <CODE CLASS="function" >env.Install()</CODE ></DT ><DD ><P > Installs one or more source files or directories in the specified target, which must be a directory. The names of the specified source files or directories remain the same within the destination directory. </P ><PRE CLASS="programlisting" > env.Install('/usr/local/bin', source = ['foo', 'bar']) </PRE ></DD ><DT ><A NAME="b-InstallAs" ></A ><CODE CLASS="function" >InstallAs()</CODE >, <CODE CLASS="function" >env.InstallAs()</CODE ></DT ><DD ><P > Installs one or more source files or directories to specific names, allowing changing a file or directory name as part of the installation. It is an error if the target and source arguments list different numbers of files or directories. </P ><PRE CLASS="programlisting" > env.InstallAs(target = '/usr/local/bin/foo', source = 'foo_debug') env.InstallAs(target = ['../lib/libfoo.a', '../lib/libbar.a'], source = ['libFOO.a', 'libBAR.a']) </PRE ></DD ><DT ><A NAME="b-Jar" ></A ><CODE CLASS="function" >Jar()</CODE >, <CODE CLASS="function" >env.Jar()</CODE ></DT ><DD ><P > Builds a Java archive (<TT CLASS="filename" >.jar</TT >) file from the specified list of sources. Any directories in the source list will be searched for <TT CLASS="filename" >.class</TT > files). Any <TT CLASS="filename" >.java</TT > files in the source list will be compiled to <TT CLASS="filename" >.class</TT > files by calling the <A HREF="#b-Java" ><CODE CLASS="function" >Java</CODE ></A > Builder.</P ><P >If the <A HREF="#cv-JARCHDIR" ><CODE CLASS="envar" >$JARCHDIR</CODE ></A > value is set, the <SPAN CLASS="application" >jar</SPAN > command will change to the specified directory using the <CODE CLASS="option" >-C</CODE > option. If <CODE CLASS="envar" >$JARCHDIR</CODE > is not set explicitly, <SPAN CLASS="application" >SCons</SPAN > will use the top of any subdirectory tree in which Java <TT CLASS="filename" >.class</TT > were built by the <A HREF="#b-Java" ><CODE CLASS="function" >Java</CODE ></A > Builder.</P ><P >If the contents any of the source files begin with the string <TT CLASS="literal" >Manifest-Version</TT >, the file is assumed to be a manifest and is passed to the <SPAN CLASS="application" >jar</SPAN > command with the <CODE CLASS="option" >m</CODE > option set. </P ><PRE CLASS="programlisting" > env.Jar(target = 'foo.jar', source = 'classes') env.Jar(target = 'bar.jar', source = ['bar1.java', 'bar2.java']) </PRE ></DD ><DT ><A NAME="b-Java" ></A ><CODE CLASS="function" >Java()</CODE >, <CODE CLASS="function" >env.Java()</CODE ></DT ><DD ><P > Builds one or more Java class files. The sources may be any combination of explicit <TT CLASS="filename" >.java</TT > files, or directory trees which will be scanned for <TT CLASS="filename" >.java</TT > files.</P ><P >SCons will parse each source <TT CLASS="filename" >.java</TT > file to find the classes (including inner classes) defined within that file, and from that figure out the target <TT CLASS="filename" >.class</TT > files that will be created. The class files will be placed underneath the specified target directory.</P ><P >SCons will also search each Java file for the Java package name, which it assumes can be found on a line beginning with the string <TT CLASS="literal" >package</TT > in the first column; the resulting <TT CLASS="filename" >.class</TT > files will be placed in a directory reflecting the specified package name. For example, the file <TT CLASS="filename" >Foo.java</TT > defining a single public <CODE CLASS="classname" >Foo</CODE > class and containing a package name of <CODE CLASS="classname" >sub.dir</CODE > will generate a corresponding <TT CLASS="filename" >sub/dir/Foo.class</TT > class file.</P ><P >Examples: </P ><PRE CLASS="programlisting" > env.Java(target = 'classes', source = 'src') env.Java(target = 'classes', source = ['src1', 'src2']) env.Java(target = 'classes', source = ['File1.java', 'File2.java']) </PRE ><P > Java source files can use the native encoding for the underlying OS. Since SCons compiles in simple ASCII mode by default, the compiler will generate warnings about unmappable characters, which may lead to errors as the file is processed further. In this case, the user must specify the <TT CLASS="literal" >LANG</TT > environment variable to tell the compiler what encoding is uesd. For portibility, it's best if the encoding is hard-coded so that the compile will work if it is done on a system with a different encoding. </P ><PRE CLASS="programlisting" > env = Environment() env['ENV']['LANG'] = 'en_GB.UTF-8' </PRE ></DD ><DT ><A NAME="b-JavaH" ></A ><CODE CLASS="function" >JavaH()</CODE >, <CODE CLASS="function" >env.JavaH()</CODE ></DT ><DD ><P > Builds C header and source files for implementing Java native methods. The target can be either a directory in which the header files will be written, or a header file name which will contain all of the definitions. The source can be the names of <TT CLASS="filename" >.class</TT > files, the names of <TT CLASS="filename" >.java</TT > files to be compiled into <TT CLASS="filename" >.class</TT > files by calling the <A HREF="#b-Java" ><CODE CLASS="function" >Java</CODE ></A > builder method, or the objects returned from the <CODE CLASS="function" >Java</CODE > builder method.</P ><P >If the construction variable <A HREF="#cv-JAVACLASSDIR" ><CODE CLASS="envar" >$JAVACLASSDIR</CODE ></A > is set, either in the environment or in the call to the <CODE CLASS="function" >JavaH</CODE > builder method itself, then the value of the variable will be stripped from the beginning of any <TT CLASS="filename" >.class</TT > file names.</P ><P >Examples: </P ><PRE CLASS="programlisting" > # builds java_native.h classes = env.Java(target = 'classdir', source = 'src') env.JavaH(target = 'java_native.h', source = classes) # builds include/package_foo.h and include/package_bar.h env.JavaH(target = 'include', source = ['package/foo.class', 'package/bar.class']) # builds export/foo.h and export/bar.h env.JavaH(target = 'export', source = ['classes/foo.class', 'classes/bar.class'], JAVACLASSDIR = 'classes') </PRE ></DD ><DT ><A NAME="b-Library" ></A ><CODE CLASS="function" >Library()</CODE >, <CODE CLASS="function" >env.Library()</CODE ></DT ><DD ><P > A synonym for the <CODE CLASS="function" >StaticLibrary</CODE > builder method. </P ></DD ><DT ><A NAME="b-LoadableModule" ></A ><CODE CLASS="function" >LoadableModule()</CODE >, <CODE CLASS="function" >env.LoadableModule()</CODE ></DT ><DD ><P > On most systems, this is the same as <CODE CLASS="function" >SharedLibrary</CODE >. On Mac OS X (Darwin) platforms, this creates a loadable module bundle. </P ></DD ><DT ><A NAME="b-M4" ></A ><CODE CLASS="function" >M4()</CODE >, <CODE CLASS="function" >env.M4()</CODE ></DT ><DD ><P > Builds an output file from an M4 input file. This uses a default <A HREF="#cv-M4FLAGS" ><CODE CLASS="envar" >$M4FLAGS</CODE ></A > value of <CODE CLASS="option" >-E</CODE >, which considers all warnings to be fatal and stops on the first warning when using the GNU version of m4. Example: </P ><PRE CLASS="programlisting" > env.M4(target = 'foo.c', source = 'foo.c.m4') </PRE ></DD ><DT ><A NAME="b-Moc" ></A ><CODE CLASS="function" >Moc()</CODE >, <CODE CLASS="function" >env.Moc()</CODE ></DT ><DD ><P > Builds an output file from a moc input file. Moc input files are either header files or cxx files. This builder is only available after using the tool 'qt'. See the <A HREF="#cv-QTDIR" ><CODE CLASS="envar" >$QTDIR</CODE ></A > variable for more information. Example: </P ><PRE CLASS="programlisting" > env.Moc('foo.h') # generates moc_foo.cc env.Moc('foo.cpp') # generates foo.moc </PRE ></DD ><DT ><A NAME="b-MSVSProject" ></A ><CODE CLASS="function" >MSVSProject()</CODE >, <CODE CLASS="function" >env.MSVSProject()</CODE ></DT ><DD ><P > Builds a Microsoft Visual Studio project file, and by default builds a solution file as well.</P ><P >This builds a Visual Studio project file, based on the version of Visual Studio that is configured (either the latest installed version, or the version specified by <A HREF="#cv-MSVS_VERSION" ><CODE CLASS="envar" >$MSVS_VERSION</CODE ></A > in the Environment constructor). For Visual Studio 6, it will generate a <TT CLASS="filename" >.dsp</TT > file. For Visual Studio 7 (.NET) and later versions, it will generate a <TT CLASS="filename" >.vcproj</TT > file.</P ><P >By default, this also generates a solution file for the specified project, a <TT CLASS="filename" >.dsw</TT > file for Visual Studio 6 or a <TT CLASS="filename" >.sln</TT > file for Visual Studio 7 (.NET). This behavior may be disabled by specifying <TT CLASS="literal" >auto_build_solution=0</TT > when you call <CODE CLASS="function" >MSVSProject</CODE >, in which case you presumably want to build the solution file(s) by calling the <CODE CLASS="function" >MSVSSolution</CODE > Builder (see below).</P ><P >The <CODE CLASS="function" >MSVSProject</CODE > builder takes several lists of filenames to be placed into the project file. These are currently limited to <TT CLASS="literal" >srcs</TT >, <TT CLASS="literal" >incs</TT >, <TT CLASS="literal" >localincs</TT >, <TT CLASS="literal" >resources</TT >, and <TT CLASS="literal" >misc</TT >. These are pretty self-explanatory, but it should be noted that these lists are added to the <A HREF="#cv-SOURCES" ><CODE CLASS="envar" >$SOURCES</CODE ></A > construction variable as strings, NOT as SCons File Nodes. This is because they represent file names to be added to the project file, not the source files used to build the project file.</P ><P >The above filename lists are all optional, although at least one must be specified for the resulting project file to be non-empty.</P ><P >In addition to the above lists of values, the following values may be specified:</P ><P ><TT CLASS="literal" >target</TT >: The name of the target <TT CLASS="filename" >.dsp</TT > or <TT CLASS="filename" >.vcproj</TT > file. The correct suffix for the version of Visual Studio must be used, but the <A HREF="#cv-MSVSPROJECTSUFFIX" ><CODE CLASS="envar" >$MSVSPROJECTSUFFIX</CODE ></A > construction variable will be defined to the correct value (see example below).</P ><P ><TT CLASS="literal" >variant</TT >: The name of this particular variant. For Visual Studio 7 projects, this can also be a list of variant names. These are typically things like "Debug" or "Release", but really can be anything you want. For Visual Studio 7 projects, they may also specify a target platform separated from the variant name by a <TT CLASS="literal" >|</TT > (vertical pipe) character: <TT CLASS="literal" >Debug|Xbox</TT >. The default target platform is Win32. Multiple calls to <CODE CLASS="function" >MSVSProject</CODE > with different variants are allowed; all variants will be added to the project file with their appropriate build targets and sources.</P ><P ><TT CLASS="literal" >buildtarget</TT >: An optional string, node, or list of strings or nodes (one per build variant), to tell the Visual Studio debugger what output target to use in what build variant. The number of <TT CLASS="literal" >buildtarget</TT > entries must match the number of <TT CLASS="literal" >variant</TT > entries.</P ><P ><TT CLASS="literal" >runfile</TT >: The name of the file that Visual Studio 7 and later will run and debug. This appears as the value of the <TT CLASS="literal" >Output</TT > field in the resutling Visual Studio project file. If this is not specified, the default is the same as the specified <TT CLASS="literal" >buildtarget</TT > value.</P ><P >Note that because <SPAN CLASS="application" >SCons</SPAN > always executes its build commands from the directory in which the <TT CLASS="filename" >SConstruct</TT > file is located, if you generate a project file in a different directory than the <TT CLASS="filename" >SConstruct</TT > directory, users will not be able to double-click on the file name in compilation error messages displayed in the Visual Studio console output window. This can be remedied by adding the Visual C/C++ .B /FC compiler option to the <A HREF="#cv-CCFLAGS" ><CODE CLASS="envar" >$CCFLAGS</CODE ></A > variable so that the compiler will print the full path name of any files that cause compilation errors.</P ><P >Example usage: </P ><PRE CLASS="programlisting" > barsrcs = ['bar.cpp'], barincs = ['bar.h'], barlocalincs = ['StdAfx.h'] barresources = ['bar.rc','resource.h'] barmisc = ['bar_readme.txt'] dll = env.SharedLibrary(target = 'bar.dll', source = barsrcs) env.MSVSProject(target = 'Bar' + env['MSVSPROJECTSUFFIX'], srcs = barsrcs, incs = barincs, localincs = barlocalincs, resources = barresources, misc = barmisc, buildtarget = dll, variant = 'Release') </PRE ></DD ><DT ><A NAME="b-MSVSSolution" ></A ><CODE CLASS="function" >MSVSSolution()</CODE >, <CODE CLASS="function" >env.MSVSSolution()</CODE ></DT ><DD ><P > Builds a Microsoft Visual Studio solution file.</P ><P >This builds a Visual Studio solution file, based on the version of Visual Studio that is configured (either the latest installed version, or the version specified by <A HREF="#cv-MSVS_VERSION" ><CODE CLASS="envar" >$MSVS_VERSION</CODE ></A > in the construction environment). For Visual Studio 6, it will generate a <TT CLASS="filename" >.dsw</TT > file. For Visual Studio 7 (.NET), it will generate a <TT CLASS="filename" >.sln</TT > file.</P ><P >The following values must be specified:</P ><P ><TT CLASS="literal" >target</TT >: The name of the target .dsw or .sln file. The correct suffix for the version of Visual Studio must be used, but the value <A HREF="#cv-MSVSSOLUTIONSUFFIX" ><CODE CLASS="envar" >$MSVSSOLUTIONSUFFIX</CODE ></A > will be defined to the correct value (see example below).</P ><P ><TT CLASS="literal" >variant</TT >: The name of this particular variant, or a list of variant names (the latter is only supported for MSVS 7 solutions). These are typically things like "Debug" or "Release", but really can be anything you want. For MSVS 7 they may also specify target platform, like this "Debug|Xbox". Default platform is Win32.</P ><P ><TT CLASS="literal" >projects</TT >: A list of project file names, or Project nodes returned by calls to the <CODE CLASS="function" >MSVSProject</CODE > Builder, to be placed into the solution file. It should be noted that these file names are NOT added to the $SOURCES environment variable in form of files, but rather as strings. This is because they represent file names to be added to the solution file, not the source files used to build the solution file.</P ><P >(NOTE: Currently only one project is supported per solution.)</P ><P >Example Usage: </P ><PRE CLASS="programlisting" > env.MSVSSolution(target = 'Bar' + env['MSVSSOLUTIONSUFFIX'], projects = ['bar' + env['MSVSPROJECTSUFFIX']], variant = 'Release') </PRE ></DD ><DT ><A NAME="b-Object" ></A ><CODE CLASS="function" >Object()</CODE >, <CODE CLASS="function" >env.Object()</CODE ></DT ><DD ><P > A synonym for the <CODE CLASS="function" >StaticObject</CODE > builder method. </P ></DD ><DT ><A NAME="b-Package" ></A ><CODE CLASS="function" >Package()</CODE >, <CODE CLASS="function" >env.Package()</CODE ></DT ><DD ><P > Builds software distribution packages. Packages consist of files to install and packaging information. The former may be specified with the <CODE CLASS="varname" >source</CODE > parameter and may be left out, in which case the <CODE CLASS="function" >FindInstalledFiles</CODE > function will collect all files that have an <CODE CLASS="function" >Install</CODE > or <CODE CLASS="function" >InstallAs</CODE > Builder attached. If the <CODE CLASS="varname" >target</CODE > is not specified it will be deduced from additional information given to this Builder.</P ><P >The packaging information is specified with the help of construction variables documented below. This information is called a tag to stress that some of them can also be attached to files with the <CODE CLASS="function" >Tag</CODE > function. The mandatory ones will complain if they were not specified. They vary depending on chosen target packager.</P ><P >The target packager may be selected with the "PACKAGETYPE" command line option or with the <CODE CLASS="envar" >$PACKAGETYPE</CODE > construction variable. Currently the following packagers available:</P ><P > * msi - Microsoft Installer * rpm - Redhat Package Manger * ipkg - Itsy Package Management System * tarbz2 - compressed tar * targz - compressed tar * zip - zip file * src_tarbz2 - compressed tar source * src_targz - compressed tar source * src_zip - zip file source</P ><P >An updated list is always available under the "package_type" option when running "scons --help" on a project that has packaging activated. </P ><PRE CLASS="programlisting" > env = Environment(tools=['default', 'packaging']) env.Install('/bin/', 'my_program') env.Package( NAME = 'foo', VERSION = '1.2.3', PACKAGEVERSION = 0, PACKAGETYPE = 'rpm', LICENSE = 'gpl', SUMMARY = 'balalalalal', DESCRIPTION = 'this should be really really long', X_RPM_GROUP = 'Application/fu', SOURCE_URL = 'http://foo.org/foo-1.2.3.tar.gz' ) </PRE ></DD ><DT ><A NAME="b-PCH" ></A ><CODE CLASS="function" >PCH()</CODE >, <CODE CLASS="function" >env.PCH()</CODE ></DT ><DD ><P > Builds a Microsoft Visual C++ precompiled header. Calling this builder method returns a list of two targets: the PCH as the first element, and the object file as the second element. Normally the object file is ignored. This builder method is only provided when Microsoft Visual C++ is being used as the compiler. The PCH builder method is generally used in conjuction with the PCH construction variable to force object files to use the precompiled header: </P ><PRE CLASS="programlisting" > env['PCH'] = env.PCH('StdAfx.cpp')[0] </PRE ></DD ><DT ><A NAME="b-PDF" ></A ><CODE CLASS="function" >PDF()</CODE >, <CODE CLASS="function" >env.PDF()</CODE ></DT ><DD ><P > Builds a <TT CLASS="filename" >.pdf</TT > file from a <TT CLASS="filename" >.dvi</TT > input file (or, by extension, a <TT CLASS="filename" >.tex</TT >, <TT CLASS="filename" >.ltx</TT >, or <TT CLASS="filename" >.latex</TT > input file). The suffix specified by the <A HREF="#cv-PDFSUFFIX" ><CODE CLASS="envar" >$PDFSUFFIX</CODE ></A > construction variable (<TT CLASS="filename" >.pdf</TT > by default) is added automatically to the target if it is not already present. Example: </P ><PRE CLASS="programlisting" > # builds from aaa.tex env.PDF(target = 'aaa.pdf', source = 'aaa.tex') # builds bbb.pdf from bbb.dvi env.PDF(target = 'bbb', source = 'bbb.dvi') </PRE ></DD ><DT ><A NAME="b-PostScript" ></A ><CODE CLASS="function" >PostScript()</CODE >, <CODE CLASS="function" >env.PostScript()</CODE ></DT ><DD ><P > Builds a <TT CLASS="filename" >.ps</TT > file from a <TT CLASS="filename" >.dvi</TT > input file (or, by extension, a <TT CLASS="filename" >.tex</TT >, <TT CLASS="filename" >.ltx</TT >, or <TT CLASS="filename" >.latex</TT > input file). The suffix specified by the <A HREF="#cv-PSSUFFIX" ><CODE CLASS="envar" >$PSSUFFIX</CODE ></A > construction variable (<TT CLASS="filename" >.ps</TT > by default) is added automatically to the target if it is not already present. Example: </P ><PRE CLASS="programlisting" > # builds from aaa.tex env.PostScript(target = 'aaa.ps', source = 'aaa.tex') # builds bbb.ps from bbb.dvi env.PostScript(target = 'bbb', source = 'bbb.dvi') </PRE ></DD ><DT ><A NAME="b-Program" ></A ><CODE CLASS="function" >Program()</CODE >, <CODE CLASS="function" >env.Program()</CODE ></DT ><DD ><P > Builds an executable given one or more object files or C, C++, D, or Fortran source files. If any C, C++, D or Fortran source files are specified, then they will be automatically compiled to object files using the <CODE CLASS="function" >Object</CODE > builder method; see that builder method's description for a list of legal source file suffixes and how they are interpreted. The target executable file prefix (specified by the <A HREF="#cv-PROGPREFIX" ><CODE CLASS="envar" >$PROGPREFIX</CODE ></A > construction variable; nothing by default) and suffix (specified by the <A HREF="#cv-PROGSUFFIX" ><CODE CLASS="envar" >$PROGSUFFIX</CODE ></A > construction variable; by default, <TT CLASS="filename" >.exe</TT > on Windows systems, nothing on POSIX systems) are automatically added to the target if not already present. Example: </P ><PRE CLASS="programlisting" > env.Program(target = 'foo', source = ['foo.o', 'bar.c', 'baz.f']) </PRE ></DD ><DT ><A NAME="b-RES" ></A ><CODE CLASS="function" >RES()</CODE >, <CODE CLASS="function" >env.RES()</CODE ></DT ><DD ><P > Builds a Microsoft Visual C++ resource file. This builder method is only provided when Microsoft Visual C++ or MinGW is being used as the compiler. The <TT CLASS="filename" >.res</TT > (or <TT CLASS="filename" >.o</TT > for MinGW) suffix is added to the target name if no other suffix is given. The source file is scanned for implicit dependencies as though it were a C file. Example: </P ><PRE CLASS="programlisting" > env.RES('resource.rc') </PRE ></DD ><DT ><A NAME="b-RMIC" ></A ><CODE CLASS="function" >RMIC()</CODE >, <CODE CLASS="function" >env.RMIC()</CODE ></DT ><DD ><P > Builds stub and skeleton class files for remote objects from Java <TT CLASS="filename" >.class</TT > files. The target is a directory relative to which the stub and skeleton class files will be written. The source can be the names of <TT CLASS="filename" >.class</TT > files, or the objects return from the <CODE CLASS="function" >Java</CODE > builder method.</P ><P >If the construction variable <A HREF="#cv-JAVACLASSDIR" ><CODE CLASS="envar" >$JAVACLASSDIR</CODE ></A > is set, either in the environment or in the call to the <CODE CLASS="function" >RMIC</CODE > builder method itself, then the value of the variable will be stripped from the beginning of any <TT CLASS="filename" >.class </TT > file names. </P ><PRE CLASS="programlisting" > classes = env.Java(target = 'classdir', source = 'src') env.RMIC(target = 'outdir1', source = classes) env.RMIC(target = 'outdir2', source = ['package/foo.class', 'package/bar.class']) env.RMIC(target = 'outdir3', source = ['classes/foo.class', 'classes/bar.class'], JAVACLASSDIR = 'classes') </PRE ></DD ><DT ><A NAME="b-RPCGenClient" ></A ><CODE CLASS="function" >RPCGenClient()</CODE >, <CODE CLASS="function" >env.RPCGenClient()</CODE ></DT ><DD ><P > Generates an RPC client stub (<TT CLASS="filename" >_clnt.c</TT >) file from a specified RPC (<TT CLASS="filename" >.x</TT >) source file. Because rpcgen only builds output files in the local directory, the command will be executed in the source file's directory by default. </P ><PRE CLASS="programlisting" > # Builds src/rpcif_clnt.c env.RPCGenClient('src/rpcif.x') </PRE ></DD ><DT ><A NAME="b-RPCGenHeader" ></A ><CODE CLASS="function" >RPCGenHeader()</CODE >, <CODE CLASS="function" >env.RPCGenHeader()</CODE ></DT ><DD ><P > Generates an RPC header (<TT CLASS="filename" >.h</TT >) file from a specified RPC (<TT CLASS="filename" >.x</TT >) source file. Because rpcgen only builds output files in the local directory, the command will be executed in the source file's directory by default. </P ><PRE CLASS="programlisting" > # Builds src/rpcif.h env.RPCGenHeader('src/rpcif.x') </PRE ></DD ><DT ><A NAME="b-RPCGenService" ></A ><CODE CLASS="function" >RPCGenService()</CODE >, <CODE CLASS="function" >env.RPCGenService()</CODE ></DT ><DD ><P > Generates an RPC server-skeleton (<TT CLASS="filename" >_svc.c</TT >) file from a specified RPC (<TT CLASS="filename" >.x</TT >) source file. Because rpcgen only builds output files in the local directory, the command will be executed in the source file's directory by default. </P ><PRE CLASS="programlisting" > # Builds src/rpcif_svc.c env.RPCGenClient('src/rpcif.x') </PRE ></DD ><DT ><A NAME="b-RPCGenXDR" ></A ><CODE CLASS="function" >RPCGenXDR()</CODE >, <CODE CLASS="function" >env.RPCGenXDR()</CODE ></DT ><DD ><P > Generates an RPC XDR routine (<TT CLASS="filename" >_xdr.c</TT >) file from a specified RPC (<TT CLASS="filename" >.x</TT >) source file. Because rpcgen only builds output files in the local directory, the command will be executed in the source file's directory by default. </P ><PRE CLASS="programlisting" > # Builds src/rpcif_xdr.c env.RPCGenClient('src/rpcif.x') </PRE ></DD ><DT ><A NAME="b-SharedLibrary" ></A ><CODE CLASS="function" >SharedLibrary()</CODE >, <CODE CLASS="function" >env.SharedLibrary()</CODE ></DT ><DD ><P > Builds a shared library (<TT CLASS="filename" >.so</TT > on a POSIX system, <TT CLASS="filename" >.dll</TT > on Windows) given one or more object files or C, C++, D or Fortran source files. If any source files are given, then they will be automatically compiled to object files. The static library prefix and suffix (if any) are automatically added to the target. The target library file prefix (specified by the <A HREF="#cv-SHLIBPREFIX" ><CODE CLASS="envar" >$SHLIBPREFIX</CODE ></A > construction variable; by default, <TT CLASS="filename" >lib</TT > on POSIX systems, nothing on Windows systems) and suffix (specified by the <A HREF="#cv-SHLIBSUFFIX" ><CODE CLASS="envar" >$SHLIBSUFFIX</CODE ></A > construction variable; by default, <TT CLASS="filename" >.dll</TT > on Windows systems, <TT CLASS="filename" >.so</TT > on POSIX systems) are automatically added to the target if not already present. Example: </P ><PRE CLASS="programlisting" > env.SharedLibrary(target = 'bar', source = ['bar.c', 'foo.o']) </PRE ><P > On Windows systems, the <CODE CLASS="function" >SharedLibrary</CODE > builder method will always build an import (<TT CLASS="filename" >.lib</TT >) library in addition to the shared (<TT CLASS="filename" >.dll</TT >) library, adding a <TT CLASS="filename" >.lib</TT > library with the same basename if there is not already a <TT CLASS="filename" >.lib</TT > file explicitly listed in the targets.</P ><P >Any object files listed in the <TT CLASS="literal" >source</TT > must have been built for a shared library (that is, using the <CODE CLASS="function" >SharedObject</CODE > builder method). <SPAN CLASS="application" >scons</SPAN > will raise an error if there is any mismatch.</P ><P >On Windows systems, specifying <TT CLASS="literal" >register=1</TT > will cause the <TT CLASS="filename" >.dll</TT > to be registered after it is built using REGSVR32. The command that is run ("regsvr32" by default) is determined by <A HREF="#cv-REGSVR" ><CODE CLASS="envar" >$REGSVR</CODE ></A > construction variable, and the flags passed are determined by <A HREF="#cv-REGSVRFLAGS" ><CODE CLASS="envar" >$REGSVRFLAGS</CODE ></A >. By default, <A HREF="#cv-REGSVRFLAGS" ><CODE CLASS="envar" >$REGSVRFLAGS</CODE ></A > includes the <CODE CLASS="option" >/s</CODE > option, to prevent dialogs from popping up and requiring user attention when it is run. If you change <A HREF="#cv-REGSVRFLAGS" ><CODE CLASS="envar" >$REGSVRFLAGS</CODE ></A >, be sure to include the <CODE CLASS="option" >/s</CODE > option. For example, </P ><PRE CLASS="programlisting" > env.SharedLibrary(target = 'bar', source = ['bar.cxx', 'foo.obj'], register=1) </PRE ><P > will register <TT CLASS="filename" >bar.dll</TT > as a COM object when it is done linking it. </P ></DD ><DT ><A NAME="b-SharedObject" ></A ><CODE CLASS="function" >SharedObject()</CODE >, <CODE CLASS="function" >env.SharedObject()</CODE ></DT ><DD ><P > Builds an object file for inclusion in a shared library. Source files must have one of the same set of extensions specified above for the <CODE CLASS="function" >StaticObject</CODE > builder method. On some platforms building a shared object requires additional compiler option (e.g. <CODE CLASS="option" >-fPIC</CODE > for gcc) in addition to those needed to build a normal (static) object, but on some platforms there is no difference between a shared object and a normal (static) one. When there is a difference, SCons will only allow shared objects to be linked into a shared library, and will use a different suffix for shared objects. On platforms where there is no difference, SCons will allow both normal (static) and shared objects to be linked into a shared library, and will use the same suffix for shared and normal (static) objects. The target object file prefix (specified by the <A HREF="#cv-SHOBJPREFIX" ><CODE CLASS="envar" >$SHOBJPREFIX</CODE ></A > construction variable; by default, the same as <A HREF="#cv-OBJPREFIX" ><CODE CLASS="envar" >$OBJPREFIX</CODE ></A >) and suffix (specified by the <A HREF="#cv-SHOBJSUFFIX" ><CODE CLASS="envar" >$SHOBJSUFFIX</CODE ></A > construction variable) are automatically added to the target if not already present. Examples: </P ><PRE CLASS="programlisting" > env.SharedObject(target = 'ddd', source = 'ddd.c') env.SharedObject(target = 'eee.o', source = 'eee.cpp') env.SharedObject(target = 'fff.obj', source = 'fff.for') </PRE ><P > Note that the source files will be scanned according to the suffix mappings in the <TT CLASS="literal" >SourceFileScanner</TT > object. See the section "Scanner Objects," below, for a more information. </P ></DD ><DT ><A NAME="b-StaticLibrary" ></A ><CODE CLASS="function" >StaticLibrary()</CODE >, <CODE CLASS="function" >env.StaticLibrary()</CODE ></DT ><DD ><P > Builds a static library given one or more object files or C, C++, D or Fortran source files. If any source files are given, then they will be automatically compiled to object files. The static library prefix and suffix (if any) are automatically added to the target. The target library file prefix (specified by the <A HREF="#cv-LIBPREFIX" ><CODE CLASS="envar" >$LIBPREFIX</CODE ></A > construction variable; by default, <TT CLASS="filename" >lib</TT > on POSIX systems, nothing on Windows systems) and suffix (specified by the <A HREF="#cv-LIBSUFFIX" ><CODE CLASS="envar" >$LIBSUFFIX</CODE ></A > construction variable; by default, <TT CLASS="filename" >.lib</TT > on Windows systems, <TT CLASS="filename" >.a</TT > on POSIX systems) are automatically added to the target if not already present. Example: </P ><PRE CLASS="programlisting" > env.StaticLibrary(target = 'bar', source = ['bar.c', 'foo.o']) </PRE ><P > Any object files listed in the <TT CLASS="literal" >source</TT > must have been built for a static library (that is, using the <CODE CLASS="function" >StaticObject</CODE > builder method). <SPAN CLASS="application" >scons</SPAN > will raise an error if there is any mismatch. </P ></DD ><DT ><A NAME="b-StaticObject" ></A ><CODE CLASS="function" >StaticObject()</CODE >, <CODE CLASS="function" >env.StaticObject()</CODE ></DT ><DD ><P > Builds a static object file from one or more C, C++, D, or Fortran source files. Source files must have one of the following extensions: </P ><PRE CLASS="programlisting" > .asm assembly language file .ASM assembly language file .c C file .C Windows: C file POSIX: C++ file .cc C++ file .cpp C++ file .cxx C++ file .cxx C++ file .c++ C++ file .C++ C++ file .d D file .f Fortran file .F Windows: Fortran file POSIX: Fortran file + C pre-processor .for Fortran file .FOR Fortran file .fpp Fortran file + C pre-processor .FPP Fortran file + C pre-processor .m Object C file .mm Object C++ file .s assembly language file .S Windows: assembly language file POSIX: assembly language file + C pre-processor .spp assembly language file + C pre-processor .SPP assembly language file + C pre-processor </PRE ><P > The target object file prefix (specified by the <A HREF="#cv-OBJPREFIX" ><CODE CLASS="envar" >$OBJPREFIX</CODE ></A > construction variable; nothing by default) and suffix (specified by the <A HREF="#cv-OBJSUFFIX" ><CODE CLASS="envar" >$OBJSUFFIX</CODE ></A > construction variable; <TT CLASS="filename" >.obj</TT > on Windows systems, <TT CLASS="filename" >.o</TT > on POSIX systems) are automatically added to the target if not already present. Examples: </P ><PRE CLASS="programlisting" > env.StaticObject(target = 'aaa', source = 'aaa.c') env.StaticObject(target = 'bbb.o', source = 'bbb.c++') env.StaticObject(target = 'ccc.obj', source = 'ccc.f') </PRE ><P > Note that the source files will be scanned according to the suffix mappings in <TT CLASS="literal" >SourceFileScanner</TT > object. See the section "Scanner Objects," below, for a more information. </P ></DD ><DT ><A NAME="b-Tar" ></A ><CODE CLASS="function" >Tar()</CODE >, <CODE CLASS="function" >env.Tar()</CODE ></DT ><DD ><P > Builds a tar archive of the specified files and/or directories. Unlike most builder methods, the <CODE CLASS="function" >Tar</CODE > builder method may be called multiple times for a given target; each additional call adds to the list of entries that will be built into the archive. Any source directories will be scanned for changes to any on-disk files, regardless of whether or not <SPAN CLASS="application" >scons</SPAN > knows about them from other Builder or function calls. </P ><PRE CLASS="programlisting" > env.Tar('src.tar', 'src') # Create the stuff.tar file. env.Tar('stuff', ['subdir1', 'subdir2']) # Also add "another" to the stuff.tar file. env.Tar('stuff', 'another') # Set TARFLAGS to create a gzip-filtered archive. env = Environment(TARFLAGS = '-c -z') env.Tar('foo.tar.gz', 'foo') # Also set the suffix to .tgz. env = Environment(TARFLAGS = '-c -z', TARSUFFIX = '.tgz') env.Tar('foo') </PRE ></DD ><DT ><A NAME="b-TypeLibrary" ></A ><CODE CLASS="function" >TypeLibrary()</CODE >, <CODE CLASS="function" >env.TypeLibrary()</CODE ></DT ><DD ><P > Builds a Windows type library (<TT CLASS="filename" >.tlb</TT >) file from an input IDL file (<TT CLASS="filename" >.idl</TT >). In addition, it will build the associated inteface stub and proxy source files, naming them according to the base name of the <TT CLASS="filename" >.idl</TT > file. For example, </P ><PRE CLASS="programlisting" > env.TypeLibrary(source="foo.idl") </PRE ><P > Will create <TT CLASS="filename" >foo.tlb</TT >, <TT CLASS="filename" >foo.h</TT >, <TT CLASS="filename" >foo_i.c</TT >, <TT CLASS="filename" >foo_p.c</TT > and <TT CLASS="filename" >foo_data.c</TT > files. </P ></DD ><DT ><A NAME="b-Uic" ></A ><CODE CLASS="function" >Uic()</CODE >, <CODE CLASS="function" >env.Uic()</CODE ></DT ><DD ><P > Builds a header file, an implementation file and a moc file from an ui file. and returns the corresponding nodes in the above order. This builder is only available after using the tool 'qt'. Note: you can specify <TT CLASS="filename" >.ui</TT > files directly as source files to the <CODE CLASS="function" >Program</CODE >, <CODE CLASS="function" >Library</CODE > and <CODE CLASS="function" >SharedLibrary</CODE > builders without using this builder. Using this builder lets you override the standard naming conventions (be careful: prefixes are always prepended to names of built files; if you don't want prefixes, you may set them to ``). See the <A HREF="#cv-QTDIR" ><CODE CLASS="envar" >$QTDIR</CODE ></A > variable for more information. Example: </P ><PRE CLASS="programlisting" > env.Uic('foo.ui') # -> ['foo.h', 'uic_foo.cc', 'moc_foo.cc'] env.Uic(target = Split('include/foo.h gen/uicfoo.cc gen/mocfoo.cc'), source = 'foo.ui') # -> ['include/foo.h', 'gen/uicfoo.cc', 'gen/mocfoo.cc'] </PRE ></DD ><DT ><A NAME="b-Zip" ></A ><CODE CLASS="function" >Zip()</CODE >, <CODE CLASS="function" >env.Zip()</CODE ></DT ><DD ><P > Builds a zip archive of the specified files and/or directories. Unlike most builder methods, the <CODE CLASS="function" >Zip</CODE > builder method may be called multiple times for a given target; each additional call adds to the list of entries that will be built into the archive. Any source directories will be scanned for changes to any on-disk files, regardless of whether or not <SPAN CLASS="application" >scons</SPAN > knows about them from other Builder or function calls. </P ><PRE CLASS="programlisting" > env.Zip('src.zip', 'src') # Create the stuff.zip file. env.Zip('stuff', ['subdir1', 'subdir2']) # Also add "another" to the stuff.tar file. env.Zip('stuff', 'another') </PRE ></DD ></DL ></DIV ></DIV ><DIV CLASS="appendix" ><HR><H1 ><A NAME="app-tools" ></A >Appendix C. Tools</H1 ><P > This appendix contains descriptions of all of the Tools modules that are available "out of the box" in this version of SCons. </P ><P ></P ><DIV CLASS="variablelist" ><DL ><DT ><A NAME="t-386asm" ></A ><TT CLASS="literal" >386asm</TT ></DT ><DD ><P > Sets construction variables for the 386ASM assembler for the Phar Lap ETS embedded operating system. </P ><P > Sets: <A HREF="#cv-AS" ><CODE CLASS="envar" >$AS</CODE ></A >, <A HREF="#cv-ASCOM" ><CODE CLASS="envar" >$ASCOM</CODE ></A >, <A HREF="#cv-ASFLAGS" ><CODE CLASS="envar" >$ASFLAGS</CODE ></A >, <A HREF="#cv-ASPPCOM" ><CODE CLASS="envar" >$ASPPCOM</CODE ></A >, <A HREF="#cv-ASPPFLAGS" ><CODE CLASS="envar" >$ASPPFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-CC" ><CODE CLASS="envar" >$CC</CODE ></A >, <A HREF="#cv-CPPFLAGS" ><CODE CLASS="envar" >$CPPFLAGS</CODE ></A >, <A HREF="#cv-_CPPDEFFLAGS" ><CODE CLASS="envar" >$_CPPDEFFLAGS</CODE ></A >, <A HREF="#cv-_CPPINCFLAGS" ><CODE CLASS="envar" >$_CPPINCFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="t-aixcXX" ></A ><TT CLASS="literal" >aixc++</TT ></DT ><DD ><P > Sets construction variables for the IMB xlc / Visual Age C++ compiler. </P ><P > Sets: <A HREF="#cv-CXX" ><CODE CLASS="envar" >$CXX</CODE ></A >, <A HREF="#cv-CXXVERSION" ><CODE CLASS="envar" >$CXXVERSION</CODE ></A >, <A HREF="#cv-SHCXX" ><CODE CLASS="envar" >$SHCXX</CODE ></A >, <A HREF="#cv-SHOBJSUFFIX" ><CODE CLASS="envar" >$SHOBJSUFFIX</CODE ></A >. </P ></DD ><DT ><A NAME="t-aixcc" ></A ><TT CLASS="literal" >aixcc</TT ></DT ><DD ><P > Sets construction variables for the IBM xlc / Visual Age C compiler. </P ><P > Sets: <A HREF="#cv-CC" ><CODE CLASS="envar" >$CC</CODE ></A >, <A HREF="#cv-CCVERSION" ><CODE CLASS="envar" >$CCVERSION</CODE ></A >, <A HREF="#cv-SHCC" ><CODE CLASS="envar" >$SHCC</CODE ></A >. </P ></DD ><DT ><A NAME="t-aixf77" ></A ><TT CLASS="literal" >aixf77</TT ></DT ><DD ><P > Sets construction variables for the IBM Visual Age f77 Fortran compiler. </P ><P > Sets: <A HREF="#cv-F77" ><CODE CLASS="envar" >$F77</CODE ></A >, <A HREF="#cv-SHF77" ><CODE CLASS="envar" >$SHF77</CODE ></A >. </P ></DD ><DT ><A NAME="t-aixlink" ></A ><TT CLASS="literal" >aixlink</TT ></DT ><DD ><P > Sets construction variables for the IBM Visual Age linker. </P ><P > Sets: <A HREF="#cv-LINKFLAGS" ><CODE CLASS="envar" >$LINKFLAGS</CODE ></A >, <A HREF="#cv-SHLIBSUFFIX" ><CODE CLASS="envar" >$SHLIBSUFFIX</CODE ></A >, <A HREF="#cv-SHLINKFLAGS" ><CODE CLASS="envar" >$SHLINKFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="t-applelink" ></A ><TT CLASS="literal" >applelink</TT ></DT ><DD ><P > Sets construction variables for the Apple linker (similar to the GNU linker). </P ><P > Sets: <A HREF="#cv-FRAMEWORKPATHPREFIX" ><CODE CLASS="envar" >$FRAMEWORKPATHPREFIX</CODE ></A >, <A HREF="#cv-LDMODULECOM" ><CODE CLASS="envar" >$LDMODULECOM</CODE ></A >, <A HREF="#cv-LDMODULEFLAGS" ><CODE CLASS="envar" >$LDMODULEFLAGS</CODE ></A >, <A HREF="#cv-LDMODULEPREFIX" ><CODE CLASS="envar" >$LDMODULEPREFIX</CODE ></A >, <A HREF="#cv-LDMODULESUFFIX" ><CODE CLASS="envar" >$LDMODULESUFFIX</CODE ></A >, <A HREF="#cv-LINKCOM" ><CODE CLASS="envar" >$LINKCOM</CODE ></A >, <A HREF="#cv-SHLINKCOM" ><CODE CLASS="envar" >$SHLINKCOM</CODE ></A >, <A HREF="#cv-SHLINKFLAGS" ><CODE CLASS="envar" >$SHLINKFLAGS</CODE ></A >, <A HREF="#cv-_FRAMEWORKPATH" ><CODE CLASS="envar" >$_FRAMEWORKPATH</CODE ></A >, <A HREF="#cv-_FRAMEWORKS" ><CODE CLASS="envar" >$_FRAMEWORKS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-FRAMEWORKSFLAGS" ><CODE CLASS="envar" >$FRAMEWORKSFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="t-ar" ></A ><TT CLASS="literal" >ar</TT ></DT ><DD ><P > Sets construction variables for the <SPAN CLASS="application" >ar</SPAN > library archiver. </P ><P > Sets: <A HREF="#cv-AR" ><CODE CLASS="envar" >$AR</CODE ></A >, <A HREF="#cv-ARCOM" ><CODE CLASS="envar" >$ARCOM</CODE ></A >, <A HREF="#cv-ARFLAGS" ><CODE CLASS="envar" >$ARFLAGS</CODE ></A >, <A HREF="#cv-LIBPREFIX" ><CODE CLASS="envar" >$LIBPREFIX</CODE ></A >, <A HREF="#cv-LIBSUFFIX" ><CODE CLASS="envar" >$LIBSUFFIX</CODE ></A >, <A HREF="#cv-RANLIB" ><CODE CLASS="envar" >$RANLIB</CODE ></A >, <A HREF="#cv-RANLIBCOM" ><CODE CLASS="envar" >$RANLIBCOM</CODE ></A >, <A HREF="#cv-RANLIBFLAGS" ><CODE CLASS="envar" >$RANLIBFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="t-as" ></A ><TT CLASS="literal" >as</TT ></DT ><DD ><P > Sets construction variables for the <SPAN CLASS="application" >as</SPAN > assembler. </P ><P > Sets: <A HREF="#cv-AS" ><CODE CLASS="envar" >$AS</CODE ></A >, <A HREF="#cv-ASCOM" ><CODE CLASS="envar" >$ASCOM</CODE ></A >, <A HREF="#cv-ASFLAGS" ><CODE CLASS="envar" >$ASFLAGS</CODE ></A >, <A HREF="#cv-ASPPCOM" ><CODE CLASS="envar" >$ASPPCOM</CODE ></A >, <A HREF="#cv-ASPPFLAGS" ><CODE CLASS="envar" >$ASPPFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-CC" ><CODE CLASS="envar" >$CC</CODE ></A >, <A HREF="#cv-CPPFLAGS" ><CODE CLASS="envar" >$CPPFLAGS</CODE ></A >, <A HREF="#cv-_CPPDEFFLAGS" ><CODE CLASS="envar" >$_CPPDEFFLAGS</CODE ></A >, <A HREF="#cv-_CPPINCFLAGS" ><CODE CLASS="envar" >$_CPPINCFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="t-bcc32" ></A ><TT CLASS="literal" >bcc32</TT ></DT ><DD ><P > Sets construction variables for the bcc32 compiler. </P ><P > Sets: <A HREF="#cv-CC" ><CODE CLASS="envar" >$CC</CODE ></A >, <A HREF="#cv-CCCOM" ><CODE CLASS="envar" >$CCCOM</CODE ></A >, <A HREF="#cv-CCFLAGS" ><CODE CLASS="envar" >$CCFLAGS</CODE ></A >, <A HREF="#cv-CFILESUFFIX" ><CODE CLASS="envar" >$CFILESUFFIX</CODE ></A >, <A HREF="#cv-CFLAGS" ><CODE CLASS="envar" >$CFLAGS</CODE ></A >, <A HREF="#cv-CPPDEFPREFIX" ><CODE CLASS="envar" >$CPPDEFPREFIX</CODE ></A >, <A HREF="#cv-CPPDEFSUFFIX" ><CODE CLASS="envar" >$CPPDEFSUFFIX</CODE ></A >, <A HREF="#cv-INCPREFIX" ><CODE CLASS="envar" >$INCPREFIX</CODE ></A >, <A HREF="#cv-INCSUFFIX" ><CODE CLASS="envar" >$INCSUFFIX</CODE ></A >, <A HREF="#cv-SHCC" ><CODE CLASS="envar" >$SHCC</CODE ></A >, <A HREF="#cv-SHCCCOM" ><CODE CLASS="envar" >$SHCCCOM</CODE ></A >, <A HREF="#cv-SHCCFLAGS" ><CODE CLASS="envar" >$SHCCFLAGS</CODE ></A >, <A HREF="#cv-SHCFLAGS" ><CODE CLASS="envar" >$SHCFLAGS</CODE ></A >, <A HREF="#cv-SHOBJSUFFIX" ><CODE CLASS="envar" >$SHOBJSUFFIX</CODE ></A >. </P ><P > Uses: <A HREF="#cv-_CPPDEFFLAGS" ><CODE CLASS="envar" >$_CPPDEFFLAGS</CODE ></A >, <A HREF="#cv-_CPPINCFLAGS" ><CODE CLASS="envar" >$_CPPINCFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="t-BitKeeper" ></A ><TT CLASS="literal" >BitKeeper</TT ></DT ><DD ><P > Sets construction variables for the BitKeeper source code control system. </P ><P > Sets: <A HREF="#cv-BITKEEPER" ><CODE CLASS="envar" >$BITKEEPER</CODE ></A >, <A HREF="#cv-BITKEEPERCOM" ><CODE CLASS="envar" >$BITKEEPERCOM</CODE ></A >, <A HREF="#cv-BITKEEPERGET" ><CODE CLASS="envar" >$BITKEEPERGET</CODE ></A >, <A HREF="#cv-BITKEEPERGETFLAGS" ><CODE CLASS="envar" >$BITKEEPERGETFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-BITKEEPERCOMSTR" ><CODE CLASS="envar" >$BITKEEPERCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-cc" ></A ><TT CLASS="literal" >cc</TT ></DT ><DD ><P > Sets construction variables for generic POSIX C copmilers. </P ><P > Sets: <A HREF="#cv-CC" ><CODE CLASS="envar" >$CC</CODE ></A >, <A HREF="#cv-CCCOM" ><CODE CLASS="envar" >$CCCOM</CODE ></A >, <A HREF="#cv-CCFLAGS" ><CODE CLASS="envar" >$CCFLAGS</CODE ></A >, <A HREF="#cv-CFILESUFFIX" ><CODE CLASS="envar" >$CFILESUFFIX</CODE ></A >, <A HREF="#cv-CFLAGS" ><CODE CLASS="envar" >$CFLAGS</CODE ></A >, <A HREF="#cv-CPPDEFPREFIX" ><CODE CLASS="envar" >$CPPDEFPREFIX</CODE ></A >, <A HREF="#cv-CPPDEFSUFFIX" ><CODE CLASS="envar" >$CPPDEFSUFFIX</CODE ></A >, <A HREF="#cv-FRAMEWORKPATH" ><CODE CLASS="envar" >$FRAMEWORKPATH</CODE ></A >, <A HREF="#cv-FRAMEWORKS" ><CODE CLASS="envar" >$FRAMEWORKS</CODE ></A >, <A HREF="#cv-INCPREFIX" ><CODE CLASS="envar" >$INCPREFIX</CODE ></A >, <A HREF="#cv-INCSUFFIX" ><CODE CLASS="envar" >$INCSUFFIX</CODE ></A >, <A HREF="#cv-SHCC" ><CODE CLASS="envar" >$SHCC</CODE ></A >, <A HREF="#cv-SHCCCOM" ><CODE CLASS="envar" >$SHCCCOM</CODE ></A >, <A HREF="#cv-SHCCFLAGS" ><CODE CLASS="envar" >$SHCCFLAGS</CODE ></A >, <A HREF="#cv-SHCFLAGS" ><CODE CLASS="envar" >$SHCFLAGS</CODE ></A >, <A HREF="#cv-SHOBJSUFFIX" ><CODE CLASS="envar" >$SHOBJSUFFIX</CODE ></A >. </P ><P > Uses: <A HREF="#cv-PLATFORM" ><CODE CLASS="envar" >$PLATFORM</CODE ></A >. </P ></DD ><DT ><A NAME="t-cvf" ></A ><TT CLASS="literal" >cvf</TT ></DT ><DD ><P > Sets construction variables for the Compaq Visual Fortran compiler. </P ><P > Sets: <A HREF="#cv-FORTRAN" ><CODE CLASS="envar" >$FORTRAN</CODE ></A >, <A HREF="#cv-FORTRANCOM" ><CODE CLASS="envar" >$FORTRANCOM</CODE ></A >, <A HREF="#cv-FORTRANMODDIR" ><CODE CLASS="envar" >$FORTRANMODDIR</CODE ></A >, <A HREF="#cv-FORTRANMODDIRPREFIX" ><CODE CLASS="envar" >$FORTRANMODDIRPREFIX</CODE ></A >, <A HREF="#cv-FORTRANMODDIRSUFFIX" ><CODE CLASS="envar" >$FORTRANMODDIRSUFFIX</CODE ></A >, <A HREF="#cv-FORTRANPPCOM" ><CODE CLASS="envar" >$FORTRANPPCOM</CODE ></A >, <A HREF="#cv-OBJSUFFIX" ><CODE CLASS="envar" >$OBJSUFFIX</CODE ></A >, <A HREF="#cv-SHFORTRANCOM" ><CODE CLASS="envar" >$SHFORTRANCOM</CODE ></A >, <A HREF="#cv-SHFORTRANPPCOM" ><CODE CLASS="envar" >$SHFORTRANPPCOM</CODE ></A >. </P ><P > Uses: <A HREF="#cv-CPPFLAGS" ><CODE CLASS="envar" >$CPPFLAGS</CODE ></A >, <A HREF="#cv-FORTRANFLAGS" ><CODE CLASS="envar" >$FORTRANFLAGS</CODE ></A >, <A HREF="#cv-SHFORTRANFLAGS" ><CODE CLASS="envar" >$SHFORTRANFLAGS</CODE ></A >, <A HREF="#cv-_CPPDEFFLAGS" ><CODE CLASS="envar" >$_CPPDEFFLAGS</CODE ></A >, <A HREF="#cv-_FORTRANINCFLAGS" ><CODE CLASS="envar" >$_FORTRANINCFLAGS</CODE ></A >, <A HREF="#cv-_FORTRANMODFLAG" ><CODE CLASS="envar" >$_FORTRANMODFLAG</CODE ></A >. </P ></DD ><DT ><A NAME="t-CVS" ></A ><TT CLASS="literal" >CVS</TT ></DT ><DD ><P > Sets construction variables for the CVS source code management system. </P ><P > Sets: <A HREF="#cv-CVS" ><CODE CLASS="envar" >$CVS</CODE ></A >, <A HREF="#cv-CVSCOFLAGS" ><CODE CLASS="envar" >$CVSCOFLAGS</CODE ></A >, <A HREF="#cv-CVSCOM" ><CODE CLASS="envar" >$CVSCOM</CODE ></A >, <A HREF="#cv-CVSFLAGS" ><CODE CLASS="envar" >$CVSFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-CVSCOMSTR" ><CODE CLASS="envar" >$CVSCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-cXX" ></A ><TT CLASS="literal" >cXX</TT ></DT ><DD ><P > Sets construction variables for generic POSIX C++ compilers. </P ><P > Sets: <A HREF="#cv-CPPDEFPREFIX" ><CODE CLASS="envar" >$CPPDEFPREFIX</CODE ></A >, <A HREF="#cv-CPPDEFSUFFIX" ><CODE CLASS="envar" >$CPPDEFSUFFIX</CODE ></A >, <A HREF="#cv-CXX" ><CODE CLASS="envar" >$CXX</CODE ></A >, <A HREF="#cv-CXXCOM" ><CODE CLASS="envar" >$CXXCOM</CODE ></A >, <A HREF="#cv-CXXFILESUFFIX" ><CODE CLASS="envar" >$CXXFILESUFFIX</CODE ></A >, <A HREF="#cv-CXXFLAGS" ><CODE CLASS="envar" >$CXXFLAGS</CODE ></A >, <A HREF="#cv-INCPREFIX" ><CODE CLASS="envar" >$INCPREFIX</CODE ></A >, <A HREF="#cv-INCSUFFIX" ><CODE CLASS="envar" >$INCSUFFIX</CODE ></A >, <A HREF="#cv-OBJSUFFIX" ><CODE CLASS="envar" >$OBJSUFFIX</CODE ></A >, <A HREF="#cv-SHCXX" ><CODE CLASS="envar" >$SHCXX</CODE ></A >, <A HREF="#cv-SHCXXCOM" ><CODE CLASS="envar" >$SHCXXCOM</CODE ></A >, <A HREF="#cv-SHCXXFLAGS" ><CODE CLASS="envar" >$SHCXXFLAGS</CODE ></A >, <A HREF="#cv-SHOBJSUFFIX" ><CODE CLASS="envar" >$SHOBJSUFFIX</CODE ></A >. </P ><P > Uses: <A HREF="#cv-CXXCOMSTR" ><CODE CLASS="envar" >$CXXCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-default" ></A ><TT CLASS="literal" >default</TT ></DT ><DD ><P > Sets variables by calling a default list of Tool modules for the platform on which SCons is running. </P ></DD ><DT ><A NAME="t-dmd" ></A ><TT CLASS="literal" >dmd</TT ></DT ><DD ><P > Sets construction variables for D language compilers (the Digital Mars D compiler, or GDC). </P ></DD ><DT ><A NAME="t-dvi" ></A ><TT CLASS="literal" >dvi</TT ></DT ><DD ><P > Attaches the <CODE CLASS="function" >DVI</CODE > builder to the construction environment. </P ></DD ><DT ><A NAME="t-dvipdf" ></A ><TT CLASS="literal" >dvipdf</TT ></DT ><DD ><P > Sets construction variables for the dvipdf utility. </P ><P > Sets: <A HREF="#cv-DVIPDF" ><CODE CLASS="envar" >$DVIPDF</CODE ></A >, <A HREF="#cv-DVIPDFCOM" ><CODE CLASS="envar" >$DVIPDFCOM</CODE ></A >, <A HREF="#cv-DVIPDFFLAGS" ><CODE CLASS="envar" >$DVIPDFFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-DVIPDFCOMSTR" ><CODE CLASS="envar" >$DVIPDFCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-dvips" ></A ><TT CLASS="literal" >dvips</TT ></DT ><DD ><P > Sets construction variables for the dvips utility. </P ><P > Sets: <A HREF="#cv-DVIPS" ><CODE CLASS="envar" >$DVIPS</CODE ></A >, <A HREF="#cv-DVIPSFLAGS" ><CODE CLASS="envar" >$DVIPSFLAGS</CODE ></A >, <A HREF="#cv-PSCOM" ><CODE CLASS="envar" >$PSCOM</CODE ></A >, <A HREF="#cv-PSPREFIX" ><CODE CLASS="envar" >$PSPREFIX</CODE ></A >, <A HREF="#cv-PSSUFFIX" ><CODE CLASS="envar" >$PSSUFFIX</CODE ></A >. </P ><P > Uses: <A HREF="#cv-PSCOMSTR" ><CODE CLASS="envar" >$PSCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-f77" ></A ><TT CLASS="literal" >f77</TT ></DT ><DD ><P > Set construction variables for generic POSIX Fortran 77 compilers. </P ><P > Sets: <A HREF="#cv-F77" ><CODE CLASS="envar" >$F77</CODE ></A >, <A HREF="#cv-F77COM" ><CODE CLASS="envar" >$F77COM</CODE ></A >, <A HREF="#cv-F77FILESUFFIXES" ><CODE CLASS="envar" >$F77FILESUFFIXES</CODE ></A >, <A HREF="#cv-F77FLAGS" ><CODE CLASS="envar" >$F77FLAGS</CODE ></A >, <A HREF="#cv-F77PPCOM" ><CODE CLASS="envar" >$F77PPCOM</CODE ></A >, <A HREF="#cv-F77PPFILESUFFIXES" ><CODE CLASS="envar" >$F77PPFILESUFFIXES</CODE ></A >, <A HREF="#cv-FORTRAN" ><CODE CLASS="envar" >$FORTRAN</CODE ></A >, <A HREF="#cv-FORTRANCOM" ><CODE CLASS="envar" >$FORTRANCOM</CODE ></A >, <A HREF="#cv-FORTRANFLAGS" ><CODE CLASS="envar" >$FORTRANFLAGS</CODE ></A >, <A HREF="#cv-SHF77" ><CODE CLASS="envar" >$SHF77</CODE ></A >, <A HREF="#cv-SHF77COM" ><CODE CLASS="envar" >$SHF77COM</CODE ></A >, <A HREF="#cv-SHF77FLAGS" ><CODE CLASS="envar" >$SHF77FLAGS</CODE ></A >, <A HREF="#cv-SHF77PPCOM" ><CODE CLASS="envar" >$SHF77PPCOM</CODE ></A >, <A HREF="#cv-SHFORTRAN" ><CODE CLASS="envar" >$SHFORTRAN</CODE ></A >, <A HREF="#cv-SHFORTRANCOM" ><CODE CLASS="envar" >$SHFORTRANCOM</CODE ></A >, <A HREF="#cv-SHFORTRANFLAGS" ><CODE CLASS="envar" >$SHFORTRANFLAGS</CODE ></A >, <A HREF="#cv-SHFORTRANPPCOM" ><CODE CLASS="envar" >$SHFORTRANPPCOM</CODE ></A >, <A HREF="#cv-_F77INCFLAGS" ><CODE CLASS="envar" >$_F77INCFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-F77COMSTR" ><CODE CLASS="envar" >$F77COMSTR</CODE ></A >, <A HREF="#cv-F77PPCOMSTR" ><CODE CLASS="envar" >$F77PPCOMSTR</CODE ></A >, <A HREF="#cv-FORTRANCOMSTR" ><CODE CLASS="envar" >$FORTRANCOMSTR</CODE ></A >, <A HREF="#cv-FORTRANPPCOMSTR" ><CODE CLASS="envar" >$FORTRANPPCOMSTR</CODE ></A >, <A HREF="#cv-SHF77COMSTR" ><CODE CLASS="envar" >$SHF77COMSTR</CODE ></A >, <A HREF="#cv-SHF77PPCOMSTR" ><CODE CLASS="envar" >$SHF77PPCOMSTR</CODE ></A >, <A HREF="#cv-SHFORTRANCOMSTR" ><CODE CLASS="envar" >$SHFORTRANCOMSTR</CODE ></A >, <A HREF="#cv-SHFORTRANPPCOMSTR" ><CODE CLASS="envar" >$SHFORTRANPPCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-f90" ></A ><TT CLASS="literal" >f90</TT ></DT ><DD ><P > Set construction variables for generic POSIX Fortran 90 compilers. </P ><P > Sets: <A HREF="#cv-F90" ><CODE CLASS="envar" >$F90</CODE ></A >, <A HREF="#cv-F90COM" ><CODE CLASS="envar" >$F90COM</CODE ></A >, <A HREF="#cv-F90FLAGS" ><CODE CLASS="envar" >$F90FLAGS</CODE ></A >, <A HREF="#cv-F90PPCOM" ><CODE CLASS="envar" >$F90PPCOM</CODE ></A >, <A HREF="#cv-SHF90" ><CODE CLASS="envar" >$SHF90</CODE ></A >, <A HREF="#cv-SHF90COM" ><CODE CLASS="envar" >$SHF90COM</CODE ></A >, <A HREF="#cv-SHF90FLAGS" ><CODE CLASS="envar" >$SHF90FLAGS</CODE ></A >, <A HREF="#cv-SHF90PPCOM" ><CODE CLASS="envar" >$SHF90PPCOM</CODE ></A >, <A HREF="#cv-_F90INCFLAGS" ><CODE CLASS="envar" >$_F90INCFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-F90COMSTR" ><CODE CLASS="envar" >$F90COMSTR</CODE ></A >, <A HREF="#cv-F90PPCOMSTR" ><CODE CLASS="envar" >$F90PPCOMSTR</CODE ></A >, <A HREF="#cv-SHF90COMSTR" ><CODE CLASS="envar" >$SHF90COMSTR</CODE ></A >, <A HREF="#cv-SHF90PPCOMSTR" ><CODE CLASS="envar" >$SHF90PPCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-f95" ></A ><TT CLASS="literal" >f95</TT ></DT ><DD ><P > Set construction variables for generic POSIX Fortran 95 compilers. </P ><P > Sets: <A HREF="#cv-F95" ><CODE CLASS="envar" >$F95</CODE ></A >, <A HREF="#cv-F95COM" ><CODE CLASS="envar" >$F95COM</CODE ></A >, <A HREF="#cv-F95FLAGS" ><CODE CLASS="envar" >$F95FLAGS</CODE ></A >, <A HREF="#cv-F95PPCOM" ><CODE CLASS="envar" >$F95PPCOM</CODE ></A >, <A HREF="#cv-SHF95" ><CODE CLASS="envar" >$SHF95</CODE ></A >, <A HREF="#cv-SHF95COM" ><CODE CLASS="envar" >$SHF95COM</CODE ></A >, <A HREF="#cv-SHF95FLAGS" ><CODE CLASS="envar" >$SHF95FLAGS</CODE ></A >, <A HREF="#cv-SHF95PPCOM" ><CODE CLASS="envar" >$SHF95PPCOM</CODE ></A >, <A HREF="#cv-_F95INCFLAGS" ><CODE CLASS="envar" >$_F95INCFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-F95COMSTR" ><CODE CLASS="envar" >$F95COMSTR</CODE ></A >, <A HREF="#cv-F95PPCOMSTR" ><CODE CLASS="envar" >$F95PPCOMSTR</CODE ></A >, <A HREF="#cv-SHF95COMSTR" ><CODE CLASS="envar" >$SHF95COMSTR</CODE ></A >, <A HREF="#cv-SHF95PPCOMSTR" ><CODE CLASS="envar" >$SHF95PPCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-fortran" ></A ><TT CLASS="literal" >fortran</TT ></DT ><DD ><P > Set construction variables for generic POSIX Fortran compilers. </P ><P > Sets: <A HREF="#cv-FORTRAN" ><CODE CLASS="envar" >$FORTRAN</CODE ></A >, <A HREF="#cv-FORTRANCOM" ><CODE CLASS="envar" >$FORTRANCOM</CODE ></A >, <A HREF="#cv-FORTRANFLAGS" ><CODE CLASS="envar" >$FORTRANFLAGS</CODE ></A >, <A HREF="#cv-SHFORTRAN" ><CODE CLASS="envar" >$SHFORTRAN</CODE ></A >, <A HREF="#cv-SHFORTRANCOM" ><CODE CLASS="envar" >$SHFORTRANCOM</CODE ></A >, <A HREF="#cv-SHFORTRANFLAGS" ><CODE CLASS="envar" >$SHFORTRANFLAGS</CODE ></A >, <A HREF="#cv-SHFORTRANPPCOM" ><CODE CLASS="envar" >$SHFORTRANPPCOM</CODE ></A >. </P ><P > Uses: <A HREF="#cv-FORTRANCOMSTR" ><CODE CLASS="envar" >$FORTRANCOMSTR</CODE ></A >, <A HREF="#cv-FORTRANPPCOMSTR" ><CODE CLASS="envar" >$FORTRANPPCOMSTR</CODE ></A >, <A HREF="#cv-SHFORTRANCOMSTR" ><CODE CLASS="envar" >$SHFORTRANCOMSTR</CODE ></A >, <A HREF="#cv-SHFORTRANPPCOMSTR" ><CODE CLASS="envar" >$SHFORTRANPPCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-gXX" ></A ><TT CLASS="literal" >g++</TT ></DT ><DD ><P > Set construction variables for the <SPAN CLASS="application" >gXX</SPAN > C++ compiler. </P ><P > Sets: <A HREF="#cv-CXX" ><CODE CLASS="envar" >$CXX</CODE ></A >, <A HREF="#cv-CXXVERSION" ><CODE CLASS="envar" >$CXXVERSION</CODE ></A >, <A HREF="#cv-SHCXXFLAGS" ><CODE CLASS="envar" >$SHCXXFLAGS</CODE ></A >, <A HREF="#cv-SHOBJSUFFIX" ><CODE CLASS="envar" >$SHOBJSUFFIX</CODE ></A >. </P ></DD ><DT ><A NAME="t-g77" ></A ><TT CLASS="literal" >g77</TT ></DT ><DD ><P > Set construction variables for the <SPAN CLASS="application" >g77</SPAN > Fortran compiler. Calls the <TT CLASS="literal" >f77</TT > Tool module to set variables. </P ></DD ><DT ><A NAME="t-gas" ></A ><TT CLASS="literal" >gas</TT ></DT ><DD ><P > Sets construction variables for the <SPAN CLASS="application" >gas</SPAN > assembler. Calls the <TT CLASS="literal" >as</TT > module. </P ><P > Sets: <A HREF="#cv-AS" ><CODE CLASS="envar" >$AS</CODE ></A >. </P ></DD ><DT ><A NAME="t-gcc" ></A ><TT CLASS="literal" >gcc</TT ></DT ><DD ><P > Set construction variables for the <SPAN CLASS="application" >gcc</SPAN > C compiler. </P ><P > Sets: <A HREF="#cv-CC" ><CODE CLASS="envar" >$CC</CODE ></A >, <A HREF="#cv-CCVERSION" ><CODE CLASS="envar" >$CCVERSION</CODE ></A >, <A HREF="#cv-SHCCFLAGS" ><CODE CLASS="envar" >$SHCCFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="t-gnulink" ></A ><TT CLASS="literal" >gnulink</TT ></DT ><DD ><P > Set construction variables for GNU linker/loader. </P ><P > Sets: <A HREF="#cv-RPATHPREFIX" ><CODE CLASS="envar" >$RPATHPREFIX</CODE ></A >, <A HREF="#cv-RPATHSUFFIX" ><CODE CLASS="envar" >$RPATHSUFFIX</CODE ></A >, <A HREF="#cv-SHLINKFLAGS" ><CODE CLASS="envar" >$SHLINKFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="t-gs" ></A ><TT CLASS="literal" >gs</TT ></DT ><DD ><P > Set construction variables for Ghostscript. </P ><P > Sets: <A HREF="#cv-GS" ><CODE CLASS="envar" >$GS</CODE ></A >, <A HREF="#cv-GSCOM" ><CODE CLASS="envar" >$GSCOM</CODE ></A >, <A HREF="#cv-GSFLAGS" ><CODE CLASS="envar" >$GSFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-GSCOMSTR" ><CODE CLASS="envar" >$GSCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-hpcXX" ></A ><TT CLASS="literal" >hpc++</TT ></DT ><DD ><P > Set construction variables for the compilers aCC on HP/UX systems. </P ></DD ><DT ><A NAME="t-hpcc" ></A ><TT CLASS="literal" >hpcc</TT ></DT ><DD ><P > Set construction variables for the <SPAN CLASS="application" >aCC</SPAN > on HP/UX systems. Calls the <TT CLASS="literal" >cXX</TT > tool for additional variables. </P ><P > Sets: <A HREF="#cv-CXX" ><CODE CLASS="envar" >$CXX</CODE ></A >, <A HREF="#cv-CXXVERSION" ><CODE CLASS="envar" >$CXXVERSION</CODE ></A >, <A HREF="#cv-SHCXXFLAGS" ><CODE CLASS="envar" >$SHCXXFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="t-hplink" ></A ><TT CLASS="literal" >hplink</TT ></DT ><DD ><P > Sets construction variables for the linker on HP/UX systems. </P ><P > Sets: <A HREF="#cv-LINKFLAGS" ><CODE CLASS="envar" >$LINKFLAGS</CODE ></A >, <A HREF="#cv-SHLIBSUFFIX" ><CODE CLASS="envar" >$SHLIBSUFFIX</CODE ></A >, <A HREF="#cv-SHLINKFLAGS" ><CODE CLASS="envar" >$SHLINKFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="t-icc" ></A ><TT CLASS="literal" >icc</TT ></DT ><DD ><P > Sets construction variables for the <SPAN CLASS="application" >icc</SPAN > compiler on OS/2 systems. </P ><P > Sets: <A HREF="#cv-CC" ><CODE CLASS="envar" >$CC</CODE ></A >, <A HREF="#cv-CCCOM" ><CODE CLASS="envar" >$CCCOM</CODE ></A >, <A HREF="#cv-CFILESUFFIX" ><CODE CLASS="envar" >$CFILESUFFIX</CODE ></A >, <A HREF="#cv-CPPDEFPREFIX" ><CODE CLASS="envar" >$CPPDEFPREFIX</CODE ></A >, <A HREF="#cv-CPPDEFSUFFIX" ><CODE CLASS="envar" >$CPPDEFSUFFIX</CODE ></A >, <A HREF="#cv-CXXCOM" ><CODE CLASS="envar" >$CXXCOM</CODE ></A >, <A HREF="#cv-CXXFILESUFFIX" ><CODE CLASS="envar" >$CXXFILESUFFIX</CODE ></A >, <A HREF="#cv-INCPREFIX" ><CODE CLASS="envar" >$INCPREFIX</CODE ></A >, <A HREF="#cv-INCSUFFIX" ><CODE CLASS="envar" >$INCSUFFIX</CODE ></A >. </P ><P > Uses: <A HREF="#cv-CCFLAGS" ><CODE CLASS="envar" >$CCFLAGS</CODE ></A >, <A HREF="#cv-CFLAGS" ><CODE CLASS="envar" >$CFLAGS</CODE ></A >, <A HREF="#cv-CPPFLAGS" ><CODE CLASS="envar" >$CPPFLAGS</CODE ></A >, <A HREF="#cv-_CPPDEFFLAGS" ><CODE CLASS="envar" >$_CPPDEFFLAGS</CODE ></A >, <A HREF="#cv-_CPPINCFLAGS" ><CODE CLASS="envar" >$_CPPINCFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="t-icl" ></A ><TT CLASS="literal" >icl</TT ></DT ><DD ><P > Sets construction variables for the Intel C/C++ compiler. Calls the <TT CLASS="literal" >intelc</TT > Tool module to set its variables. </P ></DD ><DT ><A NAME="t-ifl" ></A ><TT CLASS="literal" >ifl</TT ></DT ><DD ><P > Sets construction variables for the Intel Fortran compiler. </P ><P > Sets: <A HREF="#cv-FORTRAN" ><CODE CLASS="envar" >$FORTRAN</CODE ></A >, <A HREF="#cv-FORTRANCOM" ><CODE CLASS="envar" >$FORTRANCOM</CODE ></A >, <A HREF="#cv-FORTRANPPCOM" ><CODE CLASS="envar" >$FORTRANPPCOM</CODE ></A >, <A HREF="#cv-SHFORTRANCOM" ><CODE CLASS="envar" >$SHFORTRANCOM</CODE ></A >, <A HREF="#cv-SHFORTRANPPCOM" ><CODE CLASS="envar" >$SHFORTRANPPCOM</CODE ></A >. </P ><P > Uses: <A HREF="#cv-CPPFLAGS" ><CODE CLASS="envar" >$CPPFLAGS</CODE ></A >, <A HREF="#cv-FORTRANFLAGS" ><CODE CLASS="envar" >$FORTRANFLAGS</CODE ></A >, <A HREF="#cv-_CPPDEFFLAGS" ><CODE CLASS="envar" >$_CPPDEFFLAGS</CODE ></A >, <A HREF="#cv-_FORTRANINCFLAGS" ><CODE CLASS="envar" >$_FORTRANINCFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="t-ifort" ></A ><TT CLASS="literal" >ifort</TT ></DT ><DD ><P > Sets construction variables for newer versions of the Intel Fortran compiler for Linux. </P ><P > Sets: <A HREF="#cv-F77" ><CODE CLASS="envar" >$F77</CODE ></A >, <A HREF="#cv-F90" ><CODE CLASS="envar" >$F90</CODE ></A >, <A HREF="#cv-F95" ><CODE CLASS="envar" >$F95</CODE ></A >, <A HREF="#cv-FORTRAN" ><CODE CLASS="envar" >$FORTRAN</CODE ></A >, <A HREF="#cv-SHF77" ><CODE CLASS="envar" >$SHF77</CODE ></A >, <A HREF="#cv-SHF77FLAGS" ><CODE CLASS="envar" >$SHF77FLAGS</CODE ></A >, <A HREF="#cv-SHF90" ><CODE CLASS="envar" >$SHF90</CODE ></A >, <A HREF="#cv-SHF90FLAGS" ><CODE CLASS="envar" >$SHF90FLAGS</CODE ></A >, <A HREF="#cv-SHF95" ><CODE CLASS="envar" >$SHF95</CODE ></A >, <A HREF="#cv-SHF95FLAGS" ><CODE CLASS="envar" >$SHF95FLAGS</CODE ></A >, <A HREF="#cv-SHFORTRAN" ><CODE CLASS="envar" >$SHFORTRAN</CODE ></A >, <A HREF="#cv-SHFORTRANFLAGS" ><CODE CLASS="envar" >$SHFORTRANFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="t-ilink" ></A ><TT CLASS="literal" >ilink</TT ></DT ><DD ><P > Sets construction variables for the <SPAN CLASS="application" >ilink</SPAN > linker on OS/2 systems. </P ><P > Sets: <A HREF="#cv-LIBDIRPREFIX" ><CODE CLASS="envar" >$LIBDIRPREFIX</CODE ></A >, <A HREF="#cv-LIBDIRSUFFIX" ><CODE CLASS="envar" >$LIBDIRSUFFIX</CODE ></A >, <A HREF="#cv-LIBLINKPREFIX" ><CODE CLASS="envar" >$LIBLINKPREFIX</CODE ></A >, <A HREF="#cv-LIBLINKSUFFIX" ><CODE CLASS="envar" >$LIBLINKSUFFIX</CODE ></A >, <A HREF="#cv-LINK" ><CODE CLASS="envar" >$LINK</CODE ></A >, <A HREF="#cv-LINKCOM" ><CODE CLASS="envar" >$LINKCOM</CODE ></A >, <A HREF="#cv-LINKFLAGS" ><CODE CLASS="envar" >$LINKFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="t-ilink32" ></A ><TT CLASS="literal" >ilink32</TT ></DT ><DD ><P > Sets construction variables for the Borland <SPAN CLASS="application" >ilink32</SPAN > linker. </P ><P > Sets: <A HREF="#cv-LIBDIRPREFIX" ><CODE CLASS="envar" >$LIBDIRPREFIX</CODE ></A >, <A HREF="#cv-LIBDIRSUFFIX" ><CODE CLASS="envar" >$LIBDIRSUFFIX</CODE ></A >, <A HREF="#cv-LIBLINKPREFIX" ><CODE CLASS="envar" >$LIBLINKPREFIX</CODE ></A >, <A HREF="#cv-LIBLINKSUFFIX" ><CODE CLASS="envar" >$LIBLINKSUFFIX</CODE ></A >, <A HREF="#cv-LINK" ><CODE CLASS="envar" >$LINK</CODE ></A >, <A HREF="#cv-LINKCOM" ><CODE CLASS="envar" >$LINKCOM</CODE ></A >, <A HREF="#cv-LINKFLAGS" ><CODE CLASS="envar" >$LINKFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="t-install" ></A ><TT CLASS="literal" >install</TT ></DT ><DD ><P > Sets construction variables for file and directory installation. </P ><P > Sets: <A HREF="#cv-INSTALL" ><CODE CLASS="envar" >$INSTALL</CODE ></A >, <A HREF="#cv-INSTALLSTR" ><CODE CLASS="envar" >$INSTALLSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-intelc" ></A ><TT CLASS="literal" >intelc</TT ></DT ><DD ><P > Sets construction variables for the Intel C/C++ compiler (Linux and Windows, version 7 and later). Calls the <TT CLASS="literal" >gcc</TT > or <TT CLASS="literal" >msvc</TT > (on Linux and Windows, respectively) to set underlying variables. </P ><P > Sets: <A HREF="#cv-AR" ><CODE CLASS="envar" >$AR</CODE ></A >, <A HREF="#cv-CC" ><CODE CLASS="envar" >$CC</CODE ></A >, <A HREF="#cv-CXX" ><CODE CLASS="envar" >$CXX</CODE ></A >, <A HREF="#cv-INTEL_C_COMPILER_VERSION" ><CODE CLASS="envar" >$INTEL_C_COMPILER_VERSION</CODE ></A >, <A HREF="#cv-LINK" ><CODE CLASS="envar" >$LINK</CODE ></A >. </P ></DD ><DT ><A NAME="t-jar" ></A ><TT CLASS="literal" >jar</TT ></DT ><DD ><P > Sets construction variables for the <SPAN CLASS="application" >jar</SPAN > utility. </P ><P > Sets: <A HREF="#cv-JAR" ><CODE CLASS="envar" >$JAR</CODE ></A >, <A HREF="#cv-JARCOM" ><CODE CLASS="envar" >$JARCOM</CODE ></A >, <A HREF="#cv-JARFLAGS" ><CODE CLASS="envar" >$JARFLAGS</CODE ></A >, <A HREF="#cv-JARSUFFIX" ><CODE CLASS="envar" >$JARSUFFIX</CODE ></A >. </P ><P > Uses: <A HREF="#cv-JARCOMSTR" ><CODE CLASS="envar" >$JARCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-javac" ></A ><TT CLASS="literal" >javac</TT ></DT ><DD ><P > Sets construction variables for the <SPAN CLASS="application" >javac</SPAN > compiler. </P ><P > Sets: <A HREF="#cv-JAVABOOTCLASSPATH" ><CODE CLASS="envar" >$JAVABOOTCLASSPATH</CODE ></A >, <A HREF="#cv-JAVAC" ><CODE CLASS="envar" >$JAVAC</CODE ></A >, <A HREF="#cv-JAVACCOM" ><CODE CLASS="envar" >$JAVACCOM</CODE ></A >, <A HREF="#cv-JAVACFLAGS" ><CODE CLASS="envar" >$JAVACFLAGS</CODE ></A >, <A HREF="#cv-JAVACLASSPATH" ><CODE CLASS="envar" >$JAVACLASSPATH</CODE ></A >, <A HREF="#cv-JAVACLASSSUFFIX" ><CODE CLASS="envar" >$JAVACLASSSUFFIX</CODE ></A >, <A HREF="#cv-JAVASOURCEPATH" ><CODE CLASS="envar" >$JAVASOURCEPATH</CODE ></A >, <A HREF="#cv-JAVASUFFIX" ><CODE CLASS="envar" >$JAVASUFFIX</CODE ></A >. </P ><P > Uses: <A HREF="#cv-JAVACCOMSTR" ><CODE CLASS="envar" >$JAVACCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-javah" ></A ><TT CLASS="literal" >javah</TT ></DT ><DD ><P > Sets construction variables for the <SPAN CLASS="application" >javah</SPAN > tool. </P ><P > Sets: <A HREF="#cv-JAVACLASSSUFFIX" ><CODE CLASS="envar" >$JAVACLASSSUFFIX</CODE ></A >, <A HREF="#cv-JAVAH" ><CODE CLASS="envar" >$JAVAH</CODE ></A >, <A HREF="#cv-JAVAHCOM" ><CODE CLASS="envar" >$JAVAHCOM</CODE ></A >, <A HREF="#cv-JAVAHFLAGS" ><CODE CLASS="envar" >$JAVAHFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-JAVACLASSPATH" ><CODE CLASS="envar" >$JAVACLASSPATH</CODE ></A >, <A HREF="#cv-JAVAHCOMSTR" ><CODE CLASS="envar" >$JAVAHCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-latex" ></A ><TT CLASS="literal" >latex</TT ></DT ><DD ><P > Sets construction variables for the <SPAN CLASS="application" >latex</SPAN > utility. </P ><P > Sets: <A HREF="#cv-LATEX" ><CODE CLASS="envar" >$LATEX</CODE ></A >, <A HREF="#cv-LATEXCOM" ><CODE CLASS="envar" >$LATEXCOM</CODE ></A >, <A HREF="#cv-LATEXFLAGS" ><CODE CLASS="envar" >$LATEXFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-LATEXCOMSTR" ><CODE CLASS="envar" >$LATEXCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-lex" ></A ><TT CLASS="literal" >lex</TT ></DT ><DD ><P > Sets construction variables for the <SPAN CLASS="application" >lex</SPAN > lexical analyser. </P ><P > Sets: <A HREF="#cv-LEX" ><CODE CLASS="envar" >$LEX</CODE ></A >, <A HREF="#cv-LEXCOM" ><CODE CLASS="envar" >$LEXCOM</CODE ></A >, <A HREF="#cv-LEXFLAGS" ><CODE CLASS="envar" >$LEXFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-LEXCOMSTR" ><CODE CLASS="envar" >$LEXCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-link" ></A ><TT CLASS="literal" >link</TT ></DT ><DD ><P > Sets construction variables for generic POSIX linkers. </P ><P > Sets: <A HREF="#cv-LDMODULE" ><CODE CLASS="envar" >$LDMODULE</CODE ></A >, <A HREF="#cv-LDMODULECOM" ><CODE CLASS="envar" >$LDMODULECOM</CODE ></A >, <A HREF="#cv-LDMODULEFLAGS" ><CODE CLASS="envar" >$LDMODULEFLAGS</CODE ></A >, <A HREF="#cv-LDMODULEPREFIX" ><CODE CLASS="envar" >$LDMODULEPREFIX</CODE ></A >, <A HREF="#cv-LDMODULESUFFIX" ><CODE CLASS="envar" >$LDMODULESUFFIX</CODE ></A >, <A HREF="#cv-LIBDIRPREFIX" ><CODE CLASS="envar" >$LIBDIRPREFIX</CODE ></A >, <A HREF="#cv-LIBDIRSUFFIX" ><CODE CLASS="envar" >$LIBDIRSUFFIX</CODE ></A >, <A HREF="#cv-LIBLINKPREFIX" ><CODE CLASS="envar" >$LIBLINKPREFIX</CODE ></A >, <A HREF="#cv-LIBLINKSUFFIX" ><CODE CLASS="envar" >$LIBLINKSUFFIX</CODE ></A >, <A HREF="#cv-LINK" ><CODE CLASS="envar" >$LINK</CODE ></A >, <A HREF="#cv-LINKCOM" ><CODE CLASS="envar" >$LINKCOM</CODE ></A >, <A HREF="#cv-LINKFLAGS" ><CODE CLASS="envar" >$LINKFLAGS</CODE ></A >, <A HREF="#cv-SHLIBSUFFIX" ><CODE CLASS="envar" >$SHLIBSUFFIX</CODE ></A >, <A HREF="#cv-SHLINK" ><CODE CLASS="envar" >$SHLINK</CODE ></A >, <A HREF="#cv-SHLINKCOM" ><CODE CLASS="envar" >$SHLINKCOM</CODE ></A >, <A HREF="#cv-SHLINKFLAGS" ><CODE CLASS="envar" >$SHLINKFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-LDMODULECOMSTR" ><CODE CLASS="envar" >$LDMODULECOMSTR</CODE ></A >, <A HREF="#cv-LINKCOMSTR" ><CODE CLASS="envar" >$LINKCOMSTR</CODE ></A >, <A HREF="#cv-SHLINKCOMSTR" ><CODE CLASS="envar" >$SHLINKCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-linkloc" ></A ><TT CLASS="literal" >linkloc</TT ></DT ><DD ><P > Sets construction variables for the <SPAN CLASS="application" >LinkLoc</SPAN > linker for the Phar Lap ETS embedded operating system. </P ><P > Sets: <A HREF="#cv-LIBDIRPREFIX" ><CODE CLASS="envar" >$LIBDIRPREFIX</CODE ></A >, <A HREF="#cv-LIBDIRSUFFIX" ><CODE CLASS="envar" >$LIBDIRSUFFIX</CODE ></A >, <A HREF="#cv-LIBLINKPREFIX" ><CODE CLASS="envar" >$LIBLINKPREFIX</CODE ></A >, <A HREF="#cv-LIBLINKSUFFIX" ><CODE CLASS="envar" >$LIBLINKSUFFIX</CODE ></A >, <A HREF="#cv-LINK" ><CODE CLASS="envar" >$LINK</CODE ></A >, <A HREF="#cv-LINKCOM" ><CODE CLASS="envar" >$LINKCOM</CODE ></A >, <A HREF="#cv-LINKFLAGS" ><CODE CLASS="envar" >$LINKFLAGS</CODE ></A >, <A HREF="#cv-SHLINK" ><CODE CLASS="envar" >$SHLINK</CODE ></A >, <A HREF="#cv-SHLINKCOM" ><CODE CLASS="envar" >$SHLINKCOM</CODE ></A >, <A HREF="#cv-SHLINKFLAGS" ><CODE CLASS="envar" >$SHLINKFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-LINKCOMSTR" ><CODE CLASS="envar" >$LINKCOMSTR</CODE ></A >, <A HREF="#cv-SHLINKCOMSTR" ><CODE CLASS="envar" >$SHLINKCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-m4" ></A ><TT CLASS="literal" >m4</TT ></DT ><DD ><P > Sets construction variables for the <SPAN CLASS="application" >m4</SPAN > macro processor. </P ><P > Sets: <A HREF="#cv-M4" ><CODE CLASS="envar" >$M4</CODE ></A >, <A HREF="#cv-M4COM" ><CODE CLASS="envar" >$M4COM</CODE ></A >, <A HREF="#cv-M4FLAGS" ><CODE CLASS="envar" >$M4FLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-M4COMSTR" ><CODE CLASS="envar" >$M4COMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-masm" ></A ><TT CLASS="literal" >masm</TT ></DT ><DD ><P > Sets construction variables for the Microsoft assembler. </P ><P > Sets: <A HREF="#cv-AS" ><CODE CLASS="envar" >$AS</CODE ></A >, <A HREF="#cv-ASCOM" ><CODE CLASS="envar" >$ASCOM</CODE ></A >, <A HREF="#cv-ASFLAGS" ><CODE CLASS="envar" >$ASFLAGS</CODE ></A >, <A HREF="#cv-ASPPCOM" ><CODE CLASS="envar" >$ASPPCOM</CODE ></A >, <A HREF="#cv-ASPPFLAGS" ><CODE CLASS="envar" >$ASPPFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-ASCOMSTR" ><CODE CLASS="envar" >$ASCOMSTR</CODE ></A >, <A HREF="#cv-ASPPCOMSTR" ><CODE CLASS="envar" >$ASPPCOMSTR</CODE ></A >, <A HREF="#cv-CPPFLAGS" ><CODE CLASS="envar" >$CPPFLAGS</CODE ></A >, <A HREF="#cv-_CPPDEFFLAGS" ><CODE CLASS="envar" >$_CPPDEFFLAGS</CODE ></A >, <A HREF="#cv-_CPPINCFLAGS" ><CODE CLASS="envar" >$_CPPINCFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="t-midl" ></A ><TT CLASS="literal" >midl</TT ></DT ><DD ><P > Sets construction variables for the Microsoft IDL compiler. </P ><P > Sets: <A HREF="#cv-MIDL" ><CODE CLASS="envar" >$MIDL</CODE ></A >, <A HREF="#cv-MIDLCOM" ><CODE CLASS="envar" >$MIDLCOM</CODE ></A >, <A HREF="#cv-MIDLFLAGS" ><CODE CLASS="envar" >$MIDLFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-MIDLCOMSTR" ><CODE CLASS="envar" >$MIDLCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-mingw" ></A ><TT CLASS="literal" >mingw</TT ></DT ><DD ><P > Sets construction variables for MinGW (Minimal Gnu on Windows). </P ><P > Sets: <A HREF="#cv-AS" ><CODE CLASS="envar" >$AS</CODE ></A >, <A HREF="#cv-CC" ><CODE CLASS="envar" >$CC</CODE ></A >, <A HREF="#cv-CXX" ><CODE CLASS="envar" >$CXX</CODE ></A >, <A HREF="#cv-LDMODULECOM" ><CODE CLASS="envar" >$LDMODULECOM</CODE ></A >, <A HREF="#cv-LIBPREFIX" ><CODE CLASS="envar" >$LIBPREFIX</CODE ></A >, <A HREF="#cv-LIBSUFFIX" ><CODE CLASS="envar" >$LIBSUFFIX</CODE ></A >, <A HREF="#cv-OBJSUFFIX" ><CODE CLASS="envar" >$OBJSUFFIX</CODE ></A >, <A HREF="#cv-RC" ><CODE CLASS="envar" >$RC</CODE ></A >, <A HREF="#cv-RCCOM" ><CODE CLASS="envar" >$RCCOM</CODE ></A >, <A HREF="#cv-RCFLAGS" ><CODE CLASS="envar" >$RCFLAGS</CODE ></A >, <A HREF="#cv-RCINCFLAGS" ><CODE CLASS="envar" >$RCINCFLAGS</CODE ></A >, <A HREF="#cv-RCINCPREFIX" ><CODE CLASS="envar" >$RCINCPREFIX</CODE ></A >, <A HREF="#cv-RCINCSUFFIX" ><CODE CLASS="envar" >$RCINCSUFFIX</CODE ></A >, <A HREF="#cv-SHCCFLAGS" ><CODE CLASS="envar" >$SHCCFLAGS</CODE ></A >, <A HREF="#cv-SHCXXFLAGS" ><CODE CLASS="envar" >$SHCXXFLAGS</CODE ></A >, <A HREF="#cv-SHLINKCOM" ><CODE CLASS="envar" >$SHLINKCOM</CODE ></A >, <A HREF="#cv-SHLINKFLAGS" ><CODE CLASS="envar" >$SHLINKFLAGS</CODE ></A >, <A HREF="#cv-SHOBJSUFFIX" ><CODE CLASS="envar" >$SHOBJSUFFIX</CODE ></A >, <A HREF="#cv-WINDOWSDEFPREFIX" ><CODE CLASS="envar" >$WINDOWSDEFPREFIX</CODE ></A >, <A HREF="#cv-WINDOWSDEFSUFFIX" ><CODE CLASS="envar" >$WINDOWSDEFSUFFIX</CODE ></A >. </P ><P > Uses: <A HREF="#cv-RCCOMSTR" ><CODE CLASS="envar" >$RCCOMSTR</CODE ></A >, <A HREF="#cv-SHLINKCOMSTR" ><CODE CLASS="envar" >$SHLINKCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-mslib" ></A ><TT CLASS="literal" >mslib</TT ></DT ><DD ><P > Sets construction variables for the Microsoft <SPAN CLASS="application" >mslib</SPAN > library archiver. </P ><P > Sets: <A HREF="#cv-AR" ><CODE CLASS="envar" >$AR</CODE ></A >, <A HREF="#cv-ARCOM" ><CODE CLASS="envar" >$ARCOM</CODE ></A >, <A HREF="#cv-ARFLAGS" ><CODE CLASS="envar" >$ARFLAGS</CODE ></A >, <A HREF="#cv-LIBPREFIX" ><CODE CLASS="envar" >$LIBPREFIX</CODE ></A >, <A HREF="#cv-LIBSUFFIX" ><CODE CLASS="envar" >$LIBSUFFIX</CODE ></A >. </P ><P > Uses: <A HREF="#cv-ARCOMSTR" ><CODE CLASS="envar" >$ARCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-mslink" ></A ><TT CLASS="literal" >mslink</TT ></DT ><DD ><P > Sets construction variables for the Microsoft linker. </P ><P > Sets: <A HREF="#cv-LDMODULE" ><CODE CLASS="envar" >$LDMODULE</CODE ></A >, <A HREF="#cv-LDMODULECOM" ><CODE CLASS="envar" >$LDMODULECOM</CODE ></A >, <A HREF="#cv-LDMODULEFLAGS" ><CODE CLASS="envar" >$LDMODULEFLAGS</CODE ></A >, <A HREF="#cv-LDMODULEPREFIX" ><CODE CLASS="envar" >$LDMODULEPREFIX</CODE ></A >, <A HREF="#cv-LDMODULESUFFIX" ><CODE CLASS="envar" >$LDMODULESUFFIX</CODE ></A >, <A HREF="#cv-LIBDIRPREFIX" ><CODE CLASS="envar" >$LIBDIRPREFIX</CODE ></A >, <A HREF="#cv-LIBDIRSUFFIX" ><CODE CLASS="envar" >$LIBDIRSUFFIX</CODE ></A >, <A HREF="#cv-LIBLINKPREFIX" ><CODE CLASS="envar" >$LIBLINKPREFIX</CODE ></A >, <A HREF="#cv-LIBLINKSUFFIX" ><CODE CLASS="envar" >$LIBLINKSUFFIX</CODE ></A >, <A HREF="#cv-LINK" ><CODE CLASS="envar" >$LINK</CODE ></A >, <A HREF="#cv-LINKCOM" ><CODE CLASS="envar" >$LINKCOM</CODE ></A >, <A HREF="#cv-LINKFLAGS" ><CODE CLASS="envar" >$LINKFLAGS</CODE ></A >, <A HREF="#cv-REGSVR" ><CODE CLASS="envar" >$REGSVR</CODE ></A >, <A HREF="#cv-REGSVRCOM" ><CODE CLASS="envar" >$REGSVRCOM</CODE ></A >, <A HREF="#cv-REGSVRFLAGS" ><CODE CLASS="envar" >$REGSVRFLAGS</CODE ></A >, <A HREF="#cv-SHLINK" ><CODE CLASS="envar" >$SHLINK</CODE ></A >, <A HREF="#cv-SHLINKCOM" ><CODE CLASS="envar" >$SHLINKCOM</CODE ></A >, <A HREF="#cv-SHLINKFLAGS" ><CODE CLASS="envar" >$SHLINKFLAGS</CODE ></A >, <A HREF="#cv-WIN32DEFPREFIX" ><CODE CLASS="envar" >$WIN32DEFPREFIX</CODE ></A >, <A HREF="#cv-WIN32DEFSUFFIX" ><CODE CLASS="envar" >$WIN32DEFSUFFIX</CODE ></A >, <A HREF="#cv-WIN32EXPPREFIX" ><CODE CLASS="envar" >$WIN32EXPPREFIX</CODE ></A >, <A HREF="#cv-WIN32EXPSUFFIX" ><CODE CLASS="envar" >$WIN32EXPSUFFIX</CODE ></A >, <A HREF="#cv-WINDOWSDEFPREFIX" ><CODE CLASS="envar" >$WINDOWSDEFPREFIX</CODE ></A >, <A HREF="#cv-WINDOWSDEFSUFFIX" ><CODE CLASS="envar" >$WINDOWSDEFSUFFIX</CODE ></A >, <A HREF="#cv-WINDOWSEXPPREFIX" ><CODE CLASS="envar" >$WINDOWSEXPPREFIX</CODE ></A >, <A HREF="#cv-WINDOWSEXPSUFFIX" ><CODE CLASS="envar" >$WINDOWSEXPSUFFIX</CODE ></A >, <A HREF="#cv-WINDOWSPROGMANIFESTPREFIX" ><CODE CLASS="envar" >$WINDOWSPROGMANIFESTPREFIX</CODE ></A >, <A HREF="#cv-WINDOWSPROGMANIFESTSUFFIX" ><CODE CLASS="envar" >$WINDOWSPROGMANIFESTSUFFIX</CODE ></A >, <A HREF="#cv-WINDOWSSHLIBMANIFESTPREFIX" ><CODE CLASS="envar" >$WINDOWSSHLIBMANIFESTPREFIX</CODE ></A >, <A HREF="#cv-WINDOWSSHLIBMANIFESTSUFFIX" ><CODE CLASS="envar" >$WINDOWSSHLIBMANIFESTSUFFIX</CODE ></A >, <A HREF="#cv-WINDOWS_INSERT_DEF" ><CODE CLASS="envar" >$WINDOWS_INSERT_DEF</CODE ></A >. </P ><P > Uses: <A HREF="#cv-LDMODULECOMSTR" ><CODE CLASS="envar" >$LDMODULECOMSTR</CODE ></A >, <A HREF="#cv-LINKCOMSTR" ><CODE CLASS="envar" >$LINKCOMSTR</CODE ></A >, <A HREF="#cv-MSVS_IGNORE_IDE_PATHS" ><CODE CLASS="envar" >$MSVS_IGNORE_IDE_PATHS</CODE ></A >, <A HREF="#cv-REGSVRCOMSTR" ><CODE CLASS="envar" >$REGSVRCOMSTR</CODE ></A >, <A HREF="#cv-SHLINKCOMSTR" ><CODE CLASS="envar" >$SHLINKCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-msvc" ></A ><TT CLASS="literal" >msvc</TT ></DT ><DD ><P > Sets construction variables for the Microsoft Visual C/C++ compiler. </P ><P > Sets: <A HREF="#cv-BUILDERS" ><CODE CLASS="envar" >$BUILDERS</CODE ></A >, <A HREF="#cv-CC" ><CODE CLASS="envar" >$CC</CODE ></A >, <A HREF="#cv-CCCOM" ><CODE CLASS="envar" >$CCCOM</CODE ></A >, <A HREF="#cv-CCFLAGS" ><CODE CLASS="envar" >$CCFLAGS</CODE ></A >, <A HREF="#cv-CCPCHFLAGS" ><CODE CLASS="envar" >$CCPCHFLAGS</CODE ></A >, <A HREF="#cv-CCPDBFLAGS" ><CODE CLASS="envar" >$CCPDBFLAGS</CODE ></A >, <A HREF="#cv-CFILESUFFIX" ><CODE CLASS="envar" >$CFILESUFFIX</CODE ></A >, <A HREF="#cv-CFLAGS" ><CODE CLASS="envar" >$CFLAGS</CODE ></A >, <A HREF="#cv-CPPDEFPREFIX" ><CODE CLASS="envar" >$CPPDEFPREFIX</CODE ></A >, <A HREF="#cv-CPPDEFSUFFIX" ><CODE CLASS="envar" >$CPPDEFSUFFIX</CODE ></A >, <A HREF="#cv-CXX" ><CODE CLASS="envar" >$CXX</CODE ></A >, <A HREF="#cv-CXXCOM" ><CODE CLASS="envar" >$CXXCOM</CODE ></A >, <A HREF="#cv-CXXFILESUFFIX" ><CODE CLASS="envar" >$CXXFILESUFFIX</CODE ></A >, <A HREF="#cv-CXXFLAGS" ><CODE CLASS="envar" >$CXXFLAGS</CODE ></A >, <A HREF="#cv-INCPREFIX" ><CODE CLASS="envar" >$INCPREFIX</CODE ></A >, <A HREF="#cv-INCSUFFIX" ><CODE CLASS="envar" >$INCSUFFIX</CODE ></A >, <A HREF="#cv-OBJPREFIX" ><CODE CLASS="envar" >$OBJPREFIX</CODE ></A >, <A HREF="#cv-OBJSUFFIX" ><CODE CLASS="envar" >$OBJSUFFIX</CODE ></A >, <A HREF="#cv-PCHCOM" ><CODE CLASS="envar" >$PCHCOM</CODE ></A >, <A HREF="#cv-PCHPDBFLAGS" ><CODE CLASS="envar" >$PCHPDBFLAGS</CODE ></A >, <A HREF="#cv-RC" ><CODE CLASS="envar" >$RC</CODE ></A >, <A HREF="#cv-RCCOM" ><CODE CLASS="envar" >$RCCOM</CODE ></A >, <A HREF="#cv-RCFLAGS" ><CODE CLASS="envar" >$RCFLAGS</CODE ></A >, <A HREF="#cv-SHCC" ><CODE CLASS="envar" >$SHCC</CODE ></A >, <A HREF="#cv-SHCCCOM" ><CODE CLASS="envar" >$SHCCCOM</CODE ></A >, <A HREF="#cv-SHCCFLAGS" ><CODE CLASS="envar" >$SHCCFLAGS</CODE ></A >, <A HREF="#cv-SHCFLAGS" ><CODE CLASS="envar" >$SHCFLAGS</CODE ></A >, <A HREF="#cv-SHCXX" ><CODE CLASS="envar" >$SHCXX</CODE ></A >, <A HREF="#cv-SHCXXCOM" ><CODE CLASS="envar" >$SHCXXCOM</CODE ></A >, <A HREF="#cv-SHCXXFLAGS" ><CODE CLASS="envar" >$SHCXXFLAGS</CODE ></A >, <A HREF="#cv-SHOBJPREFIX" ><CODE CLASS="envar" >$SHOBJPREFIX</CODE ></A >, <A HREF="#cv-SHOBJSUFFIX" ><CODE CLASS="envar" >$SHOBJSUFFIX</CODE ></A >. </P ><P > Uses: <A HREF="#cv-CCCOMSTR" ><CODE CLASS="envar" >$CCCOMSTR</CODE ></A >, <A HREF="#cv-CXXCOMSTR" ><CODE CLASS="envar" >$CXXCOMSTR</CODE ></A >, <A HREF="#cv-SHCCCOMSTR" ><CODE CLASS="envar" >$SHCCCOMSTR</CODE ></A >, <A HREF="#cv-SHCXXCOMSTR" ><CODE CLASS="envar" >$SHCXXCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-msvs" ></A ><TT CLASS="literal" >msvs</TT ></DT ><DD ><P > Sets construction variables for Microsoft Visual Studio. </P ><P > Sets: <A HREF="#cv-MSVSBUILDCOM" ><CODE CLASS="envar" >$MSVSBUILDCOM</CODE ></A >, <A HREF="#cv-MSVSCLEANCOM" ><CODE CLASS="envar" >$MSVSCLEANCOM</CODE ></A >, <A HREF="#cv-MSVSENCODING" ><CODE CLASS="envar" >$MSVSENCODING</CODE ></A >, <A HREF="#cv-MSVSPROJECTCOM" ><CODE CLASS="envar" >$MSVSPROJECTCOM</CODE ></A >, <A HREF="#cv-MSVSREBUILDCOM" ><CODE CLASS="envar" >$MSVSREBUILDCOM</CODE ></A >, <A HREF="#cv-MSVSSCONS" ><CODE CLASS="envar" >$MSVSSCONS</CODE ></A >, <A HREF="#cv-MSVSSCONSCOM" ><CODE CLASS="envar" >$MSVSSCONSCOM</CODE ></A >, <A HREF="#cv-MSVSSCONSCRIPT" ><CODE CLASS="envar" >$MSVSSCONSCRIPT</CODE ></A >, <A HREF="#cv-MSVSSCONSFLAGS" ><CODE CLASS="envar" >$MSVSSCONSFLAGS</CODE ></A >, <A HREF="#cv-MSVSSOLUTIONCOM" ><CODE CLASS="envar" >$MSVSSOLUTIONCOM</CODE ></A >. </P ></DD ><DT ><A NAME="t-mwcc" ></A ><TT CLASS="literal" >mwcc</TT ></DT ><DD ><P > Sets construction variables for the Metrowerks CodeWarrior compiler. </P ><P > Sets: <A HREF="#cv-CC" ><CODE CLASS="envar" >$CC</CODE ></A >, <A HREF="#cv-CCCOM" ><CODE CLASS="envar" >$CCCOM</CODE ></A >, <A HREF="#cv-CFILESUFFIX" ><CODE CLASS="envar" >$CFILESUFFIX</CODE ></A >, <A HREF="#cv-CPPDEFPREFIX" ><CODE CLASS="envar" >$CPPDEFPREFIX</CODE ></A >, <A HREF="#cv-CPPDEFSUFFIX" ><CODE CLASS="envar" >$CPPDEFSUFFIX</CODE ></A >, <A HREF="#cv-CXX" ><CODE CLASS="envar" >$CXX</CODE ></A >, <A HREF="#cv-CXXCOM" ><CODE CLASS="envar" >$CXXCOM</CODE ></A >, <A HREF="#cv-CXXFILESUFFIX" ><CODE CLASS="envar" >$CXXFILESUFFIX</CODE ></A >, <A HREF="#cv-INCPREFIX" ><CODE CLASS="envar" >$INCPREFIX</CODE ></A >, <A HREF="#cv-INCSUFFIX" ><CODE CLASS="envar" >$INCSUFFIX</CODE ></A >, <A HREF="#cv-MWCW_VERSION" ><CODE CLASS="envar" >$MWCW_VERSION</CODE ></A >, <A HREF="#cv-MWCW_VERSIONS" ><CODE CLASS="envar" >$MWCW_VERSIONS</CODE ></A >, <A HREF="#cv-SHCC" ><CODE CLASS="envar" >$SHCC</CODE ></A >, <A HREF="#cv-SHCCCOM" ><CODE CLASS="envar" >$SHCCCOM</CODE ></A >, <A HREF="#cv-SHCCFLAGS" ><CODE CLASS="envar" >$SHCCFLAGS</CODE ></A >, <A HREF="#cv-SHCFLAGS" ><CODE CLASS="envar" >$SHCFLAGS</CODE ></A >, <A HREF="#cv-SHCXX" ><CODE CLASS="envar" >$SHCXX</CODE ></A >, <A HREF="#cv-SHCXXCOM" ><CODE CLASS="envar" >$SHCXXCOM</CODE ></A >, <A HREF="#cv-SHCXXFLAGS" ><CODE CLASS="envar" >$SHCXXFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-CCCOMSTR" ><CODE CLASS="envar" >$CCCOMSTR</CODE ></A >, <A HREF="#cv-CXXCOMSTR" ><CODE CLASS="envar" >$CXXCOMSTR</CODE ></A >, <A HREF="#cv-SHCCCOMSTR" ><CODE CLASS="envar" >$SHCCCOMSTR</CODE ></A >, <A HREF="#cv-SHCXXCOMSTR" ><CODE CLASS="envar" >$SHCXXCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-mwld" ></A ><TT CLASS="literal" >mwld</TT ></DT ><DD ><P > Sets construction variables for the Metrowerks CodeWarrior linker. </P ><P > Sets: <A HREF="#cv-AR" ><CODE CLASS="envar" >$AR</CODE ></A >, <A HREF="#cv-ARCOM" ><CODE CLASS="envar" >$ARCOM</CODE ></A >, <A HREF="#cv-LIBDIRPREFIX" ><CODE CLASS="envar" >$LIBDIRPREFIX</CODE ></A >, <A HREF="#cv-LIBDIRSUFFIX" ><CODE CLASS="envar" >$LIBDIRSUFFIX</CODE ></A >, <A HREF="#cv-LIBLINKPREFIX" ><CODE CLASS="envar" >$LIBLINKPREFIX</CODE ></A >, <A HREF="#cv-LIBLINKSUFFIX" ><CODE CLASS="envar" >$LIBLINKSUFFIX</CODE ></A >, <A HREF="#cv-LINK" ><CODE CLASS="envar" >$LINK</CODE ></A >, <A HREF="#cv-LINKCOM" ><CODE CLASS="envar" >$LINKCOM</CODE ></A >, <A HREF="#cv-SHLINK" ><CODE CLASS="envar" >$SHLINK</CODE ></A >, <A HREF="#cv-SHLINKCOM" ><CODE CLASS="envar" >$SHLINKCOM</CODE ></A >, <A HREF="#cv-SHLINKFLAGS" ><CODE CLASS="envar" >$SHLINKFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="t-nasm" ></A ><TT CLASS="literal" >nasm</TT ></DT ><DD ><P > Sets construction variables for the <SPAN CLASS="application" >nasm</SPAN > Netwide Assembler. </P ><P > Sets: <A HREF="#cv-AS" ><CODE CLASS="envar" >$AS</CODE ></A >, <A HREF="#cv-ASCOM" ><CODE CLASS="envar" >$ASCOM</CODE ></A >, <A HREF="#cv-ASFLAGS" ><CODE CLASS="envar" >$ASFLAGS</CODE ></A >, <A HREF="#cv-ASPPCOM" ><CODE CLASS="envar" >$ASPPCOM</CODE ></A >, <A HREF="#cv-ASPPFLAGS" ><CODE CLASS="envar" >$ASPPFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-ASCOMSTR" ><CODE CLASS="envar" >$ASCOMSTR</CODE ></A >, <A HREF="#cv-ASPPCOMSTR" ><CODE CLASS="envar" >$ASPPCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-packaging" ></A ><TT CLASS="literal" >packaging</TT ></DT ><DD ><P > A framework for building binary and source packages. </P ></DD ><DT ><A NAME="t-Packaging" ></A ><TT CLASS="literal" >Packaging</TT ></DT ><DD ><P > Sets construction variables for the <CODE CLASS="function" >Package</CODE > Builder. </P ></DD ><DT ><A NAME="t-pdf" ></A ><TT CLASS="literal" >pdf</TT ></DT ><DD ><P > Sets construction variables for the Portable Document Format builder. </P ><P > Sets: <A HREF="#cv-PDFPREFIX" ><CODE CLASS="envar" >$PDFPREFIX</CODE ></A >, <A HREF="#cv-PDFSUFFIX" ><CODE CLASS="envar" >$PDFSUFFIX</CODE ></A >. </P ></DD ><DT ><A NAME="t-pdflatex" ></A ><TT CLASS="literal" >pdflatex</TT ></DT ><DD ><P > Sets construction variables for the <SPAN CLASS="application" >pdflatex</SPAN > utility. </P ><P > Sets: <A HREF="#cv-LATEXRETRIES" ><CODE CLASS="envar" >$LATEXRETRIES</CODE ></A >, <A HREF="#cv-PDFLATEX" ><CODE CLASS="envar" >$PDFLATEX</CODE ></A >, <A HREF="#cv-PDFLATEXCOM" ><CODE CLASS="envar" >$PDFLATEXCOM</CODE ></A >, <A HREF="#cv-PDFLATEXFLAGS" ><CODE CLASS="envar" >$PDFLATEXFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-PDFLATEXCOMSTR" ><CODE CLASS="envar" >$PDFLATEXCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-pdftex" ></A ><TT CLASS="literal" >pdftex</TT ></DT ><DD ><P > Sets construction variables for the <SPAN CLASS="application" >pdftex</SPAN > utility. </P ><P > Sets: <A HREF="#cv-LATEXRETRIES" ><CODE CLASS="envar" >$LATEXRETRIES</CODE ></A >, <A HREF="#cv-PDFLATEX" ><CODE CLASS="envar" >$PDFLATEX</CODE ></A >, <A HREF="#cv-PDFLATEXCOM" ><CODE CLASS="envar" >$PDFLATEXCOM</CODE ></A >, <A HREF="#cv-PDFLATEXFLAGS" ><CODE CLASS="envar" >$PDFLATEXFLAGS</CODE ></A >, <A HREF="#cv-PDFTEX" ><CODE CLASS="envar" >$PDFTEX</CODE ></A >, <A HREF="#cv-PDFTEXCOM" ><CODE CLASS="envar" >$PDFTEXCOM</CODE ></A >, <A HREF="#cv-PDFTEXFLAGS" ><CODE CLASS="envar" >$PDFTEXFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-PDFLATEXCOMSTR" ><CODE CLASS="envar" >$PDFLATEXCOMSTR</CODE ></A >, <A HREF="#cv-PDFTEXCOMSTR" ><CODE CLASS="envar" >$PDFTEXCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-Perforce" ></A ><TT CLASS="literal" >Perforce</TT ></DT ><DD ><P > Sets construction variables for interacting with the Perforce source code management system. </P ><P > Sets: <A HREF="#cv-P4" ><CODE CLASS="envar" >$P4</CODE ></A >, <A HREF="#cv-P4COM" ><CODE CLASS="envar" >$P4COM</CODE ></A >, <A HREF="#cv-P4FLAGS" ><CODE CLASS="envar" >$P4FLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-P4COMSTR" ><CODE CLASS="envar" >$P4COMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-qt" ></A ><TT CLASS="literal" >qt</TT ></DT ><DD ><P > Sets construction variables for building Qt applications. </P ><P > Sets: <A HREF="#cv-QTDIR" ><CODE CLASS="envar" >$QTDIR</CODE ></A >, <A HREF="#cv-QT_AUTOSCAN" ><CODE CLASS="envar" >$QT_AUTOSCAN</CODE ></A >, <A HREF="#cv-QT_BINPATH" ><CODE CLASS="envar" >$QT_BINPATH</CODE ></A >, <A HREF="#cv-QT_CPPPATH" ><CODE CLASS="envar" >$QT_CPPPATH</CODE ></A >, <A HREF="#cv-QT_LIB" ><CODE CLASS="envar" >$QT_LIB</CODE ></A >, <A HREF="#cv-QT_LIBPATH" ><CODE CLASS="envar" >$QT_LIBPATH</CODE ></A >, <A HREF="#cv-QT_MOC" ><CODE CLASS="envar" >$QT_MOC</CODE ></A >, <A HREF="#cv-QT_MOCCXXPREFIX" ><CODE CLASS="envar" >$QT_MOCCXXPREFIX</CODE ></A >, <A HREF="#cv-QT_MOCCXXSUFFIX" ><CODE CLASS="envar" >$QT_MOCCXXSUFFIX</CODE ></A >, <A HREF="#cv-QT_MOCFROMCXXCOM" ><CODE CLASS="envar" >$QT_MOCFROMCXXCOM</CODE ></A >, <A HREF="#cv-QT_MOCFROMCXXFLAGS" ><CODE CLASS="envar" >$QT_MOCFROMCXXFLAGS</CODE ></A >, <A HREF="#cv-QT_MOCFROMHCOM" ><CODE CLASS="envar" >$QT_MOCFROMHCOM</CODE ></A >, <A HREF="#cv-QT_MOCFROMHFLAGS" ><CODE CLASS="envar" >$QT_MOCFROMHFLAGS</CODE ></A >, <A HREF="#cv-QT_MOCHPREFIX" ><CODE CLASS="envar" >$QT_MOCHPREFIX</CODE ></A >, <A HREF="#cv-QT_MOCHSUFFIX" ><CODE CLASS="envar" >$QT_MOCHSUFFIX</CODE ></A >, <A HREF="#cv-QT_UIC" ><CODE CLASS="envar" >$QT_UIC</CODE ></A >, <A HREF="#cv-QT_UICCOM" ><CODE CLASS="envar" >$QT_UICCOM</CODE ></A >, <A HREF="#cv-QT_UICDECLFLAGS" ><CODE CLASS="envar" >$QT_UICDECLFLAGS</CODE ></A >, <A HREF="#cv-QT_UICDECLPREFIX" ><CODE CLASS="envar" >$QT_UICDECLPREFIX</CODE ></A >, <A HREF="#cv-QT_UICDECLSUFFIX" ><CODE CLASS="envar" >$QT_UICDECLSUFFIX</CODE ></A >, <A HREF="#cv-QT_UICIMPLFLAGS" ><CODE CLASS="envar" >$QT_UICIMPLFLAGS</CODE ></A >, <A HREF="#cv-QT_UICIMPLPREFIX" ><CODE CLASS="envar" >$QT_UICIMPLPREFIX</CODE ></A >, <A HREF="#cv-QT_UICIMPLSUFFIX" ><CODE CLASS="envar" >$QT_UICIMPLSUFFIX</CODE ></A >, <A HREF="#cv-QT_UISUFFIX" ><CODE CLASS="envar" >$QT_UISUFFIX</CODE ></A >. </P ></DD ><DT ><A NAME="t-RCS" ></A ><TT CLASS="literal" >RCS</TT ></DT ><DD ><P > Sets construction variables for the interaction with the Revision Control System. </P ><P > Sets: <A HREF="#cv-RCS" ><CODE CLASS="envar" >$RCS</CODE ></A >, <A HREF="#cv-RCS_CO" ><CODE CLASS="envar" >$RCS_CO</CODE ></A >, <A HREF="#cv-RCS_COCOM" ><CODE CLASS="envar" >$RCS_COCOM</CODE ></A >, <A HREF="#cv-RCS_COFLAGS" ><CODE CLASS="envar" >$RCS_COFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-RCS_COCOMSTR" ><CODE CLASS="envar" >$RCS_COCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-rmic" ></A ><TT CLASS="literal" >rmic</TT ></DT ><DD ><P > Sets construction variables for the <SPAN CLASS="application" >rmic</SPAN > utility. </P ><P > Sets: <A HREF="#cv-JAVACLASSSUFFIX" ><CODE CLASS="envar" >$JAVACLASSSUFFIX</CODE ></A >, <A HREF="#cv-RMIC" ><CODE CLASS="envar" >$RMIC</CODE ></A >, <A HREF="#cv-RMICCOM" ><CODE CLASS="envar" >$RMICCOM</CODE ></A >, <A HREF="#cv-RMICFLAGS" ><CODE CLASS="envar" >$RMICFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-RMICCOMSTR" ><CODE CLASS="envar" >$RMICCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-rpcgen" ></A ><TT CLASS="literal" >rpcgen</TT ></DT ><DD ><P > Sets construction variables for building with RPCGEN. </P ><P > Sets: <A HREF="#cv-RPCGEN" ><CODE CLASS="envar" >$RPCGEN</CODE ></A >, <A HREF="#cv-RPCGENCLIENTFLAGS" ><CODE CLASS="envar" >$RPCGENCLIENTFLAGS</CODE ></A >, <A HREF="#cv-RPCGENFLAGS" ><CODE CLASS="envar" >$RPCGENFLAGS</CODE ></A >, <A HREF="#cv-RPCGENHEADERFLAGS" ><CODE CLASS="envar" >$RPCGENHEADERFLAGS</CODE ></A >, <A HREF="#cv-RPCGENSERVICEFLAGS" ><CODE CLASS="envar" >$RPCGENSERVICEFLAGS</CODE ></A >, <A HREF="#cv-RPCGENXDRFLAGS" ><CODE CLASS="envar" >$RPCGENXDRFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="t-SCCS" ></A ><TT CLASS="literal" >SCCS</TT ></DT ><DD ><P > Sets construction variables for interacting with the Source Code Control System. </P ><P > Sets: <A HREF="#cv-SCCS" ><CODE CLASS="envar" >$SCCS</CODE ></A >, <A HREF="#cv-SCCSCOM" ><CODE CLASS="envar" >$SCCSCOM</CODE ></A >, <A HREF="#cv-SCCSFLAGS" ><CODE CLASS="envar" >$SCCSFLAGS</CODE ></A >, <A HREF="#cv-SCCSGETFLAGS" ><CODE CLASS="envar" >$SCCSGETFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-SCCSCOMSTR" ><CODE CLASS="envar" >$SCCSCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-sgiar" ></A ><TT CLASS="literal" >sgiar</TT ></DT ><DD ><P > Sets construction variables for the SGI library archiver. </P ><P > Sets: <A HREF="#cv-AR" ><CODE CLASS="envar" >$AR</CODE ></A >, <A HREF="#cv-ARCOMSTR" ><CODE CLASS="envar" >$ARCOMSTR</CODE ></A >, <A HREF="#cv-ARFLAGS" ><CODE CLASS="envar" >$ARFLAGS</CODE ></A >, <A HREF="#cv-LIBPREFIX" ><CODE CLASS="envar" >$LIBPREFIX</CODE ></A >, <A HREF="#cv-LIBSUFFIX" ><CODE CLASS="envar" >$LIBSUFFIX</CODE ></A >, <A HREF="#cv-SHLINK" ><CODE CLASS="envar" >$SHLINK</CODE ></A >, <A HREF="#cv-SHLINKFLAGS" ><CODE CLASS="envar" >$SHLINKFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-ARCOMSTR" ><CODE CLASS="envar" >$ARCOMSTR</CODE ></A >, <A HREF="#cv-SHLINKCOMSTR" ><CODE CLASS="envar" >$SHLINKCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-sgicXX" ></A ><TT CLASS="literal" >sgic++</TT ></DT ><DD ><P > Sets construction variables for the SGI C++ compiler. </P ><P > Sets: <A HREF="#cv-CXX" ><CODE CLASS="envar" >$CXX</CODE ></A >, <A HREF="#cv-CXXFLAGS" ><CODE CLASS="envar" >$CXXFLAGS</CODE ></A >, <A HREF="#cv-SHCXX" ><CODE CLASS="envar" >$SHCXX</CODE ></A >, <A HREF="#cv-SHOBJSUFFIX" ><CODE CLASS="envar" >$SHOBJSUFFIX</CODE ></A >. </P ></DD ><DT ><A NAME="t-sgicc" ></A ><TT CLASS="literal" >sgicc</TT ></DT ><DD ><P > Sets construction variables for the SGI C compiler. </P ><P > Sets: <A HREF="#cv-CXX" ><CODE CLASS="envar" >$CXX</CODE ></A >, <A HREF="#cv-SHOBJSUFFIX" ><CODE CLASS="envar" >$SHOBJSUFFIX</CODE ></A >. </P ></DD ><DT ><A NAME="t-sgilink" ></A ><TT CLASS="literal" >sgilink</TT ></DT ><DD ><P > Sets construction variables for the SGI linker. </P ><P > Sets: <A HREF="#cv-LINK" ><CODE CLASS="envar" >$LINK</CODE ></A >, <A HREF="#cv-RPATHPREFIX" ><CODE CLASS="envar" >$RPATHPREFIX</CODE ></A >, <A HREF="#cv-RPATHSUFFIX" ><CODE CLASS="envar" >$RPATHSUFFIX</CODE ></A >, <A HREF="#cv-SHLINKFLAGS" ><CODE CLASS="envar" >$SHLINKFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="t-sunar" ></A ><TT CLASS="literal" >sunar</TT ></DT ><DD ><P > Sets construction variables for the Sun library archiver. </P ><P > Sets: <A HREF="#cv-AR" ><CODE CLASS="envar" >$AR</CODE ></A >, <A HREF="#cv-ARCOM" ><CODE CLASS="envar" >$ARCOM</CODE ></A >, <A HREF="#cv-ARFLAGS" ><CODE CLASS="envar" >$ARFLAGS</CODE ></A >, <A HREF="#cv-LIBPREFIX" ><CODE CLASS="envar" >$LIBPREFIX</CODE ></A >, <A HREF="#cv-LIBSUFFIX" ><CODE CLASS="envar" >$LIBSUFFIX</CODE ></A >, <A HREF="#cv-SHLINK" ><CODE CLASS="envar" >$SHLINK</CODE ></A >, <A HREF="#cv-SHLINKCOM" ><CODE CLASS="envar" >$SHLINKCOM</CODE ></A >, <A HREF="#cv-SHLINKFLAGS" ><CODE CLASS="envar" >$SHLINKFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-ARCOMSTR" ><CODE CLASS="envar" >$ARCOMSTR</CODE ></A >, <A HREF="#cv-SHLINKCOMSTR" ><CODE CLASS="envar" >$SHLINKCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-suncXX" ></A ><TT CLASS="literal" >sunc++</TT ></DT ><DD ><P > Sets construction variables for the Sun C++ compiler. </P ><P > Sets: <A HREF="#cv-CXX" ><CODE CLASS="envar" >$CXX</CODE ></A >, <A HREF="#cv-CXXVERSION" ><CODE CLASS="envar" >$CXXVERSION</CODE ></A >, <A HREF="#cv-SHCXX" ><CODE CLASS="envar" >$SHCXX</CODE ></A >, <A HREF="#cv-SHCXXFLAGS" ><CODE CLASS="envar" >$SHCXXFLAGS</CODE ></A >, <A HREF="#cv-SHOBJPREFIX" ><CODE CLASS="envar" >$SHOBJPREFIX</CODE ></A >, <A HREF="#cv-SHOBJSUFFIX" ><CODE CLASS="envar" >$SHOBJSUFFIX</CODE ></A >. </P ></DD ><DT ><A NAME="t-suncc" ></A ><TT CLASS="literal" >suncc</TT ></DT ><DD ><P > Sets construction variables for the Sun C compiler. </P ><P > Sets: <A HREF="#cv-CXX" ><CODE CLASS="envar" >$CXX</CODE ></A >, <A HREF="#cv-SHCCFLAGS" ><CODE CLASS="envar" >$SHCCFLAGS</CODE ></A >, <A HREF="#cv-SHOBJPREFIX" ><CODE CLASS="envar" >$SHOBJPREFIX</CODE ></A >, <A HREF="#cv-SHOBJSUFFIX" ><CODE CLASS="envar" >$SHOBJSUFFIX</CODE ></A >. </P ></DD ><DT ><A NAME="t-sunlink" ></A ><TT CLASS="literal" >sunlink</TT ></DT ><DD ><P > Sets construction variables for the Sun linker. </P ><P > Sets: <A HREF="#cv-RPATHPREFIX" ><CODE CLASS="envar" >$RPATHPREFIX</CODE ></A >, <A HREF="#cv-RPATHSUFFIX" ><CODE CLASS="envar" >$RPATHSUFFIX</CODE ></A >, <A HREF="#cv-SHLINKFLAGS" ><CODE CLASS="envar" >$SHLINKFLAGS</CODE ></A >. </P ></DD ><DT ><A NAME="t-swig" ></A ><TT CLASS="literal" >swig</TT ></DT ><DD ><P > Sets construction variables for the SWIG interface generator. </P ><P > Sets: <A HREF="#cv-SWIG" ><CODE CLASS="envar" >$SWIG</CODE ></A >, <A HREF="#cv-SWIGCFILESUFFIX" ><CODE CLASS="envar" >$SWIGCFILESUFFIX</CODE ></A >, <A HREF="#cv-SWIGCOM" ><CODE CLASS="envar" >$SWIGCOM</CODE ></A >, <A HREF="#cv-SWIGCXXFILESUFFIX" ><CODE CLASS="envar" >$SWIGCXXFILESUFFIX</CODE ></A >, <A HREF="#cv-SWIGFLAGS" ><CODE CLASS="envar" >$SWIGFLAGS</CODE ></A >, <A HREF="#cv-SWIGINCPREFIX" ><CODE CLASS="envar" >$SWIGINCPREFIX</CODE ></A >, <A HREF="#cv-SWIGINCSUFFIX" ><CODE CLASS="envar" >$SWIGINCSUFFIX</CODE ></A >, <A HREF="#cv-SWIGPATH" ><CODE CLASS="envar" >$SWIGPATH</CODE ></A >, <A HREF="#cv-_SWIGINCFLAGS" ><CODE CLASS="envar" >$_SWIGINCFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-SWIGCOMSTR" ><CODE CLASS="envar" >$SWIGCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-tar" ></A ><TT CLASS="literal" >tar</TT ></DT ><DD ><P > Sets construction variables for the <SPAN CLASS="application" >tar</SPAN > archiver. </P ><P > Sets: <A HREF="#cv-TAR" ><CODE CLASS="envar" >$TAR</CODE ></A >, <A HREF="#cv-TARCOM" ><CODE CLASS="envar" >$TARCOM</CODE ></A >, <A HREF="#cv-TARFLAGS" ><CODE CLASS="envar" >$TARFLAGS</CODE ></A >, <A HREF="#cv-TARSUFFIX" ><CODE CLASS="envar" >$TARSUFFIX</CODE ></A >. </P ><P > Uses: <A HREF="#cv-TARCOMSTR" ><CODE CLASS="envar" >$TARCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-tex" ></A ><TT CLASS="literal" >tex</TT ></DT ><DD ><P > Sets construction variables for the TeX formatter and typesetter. </P ><P > Sets: <A HREF="#cv-BIBTEX" ><CODE CLASS="envar" >$BIBTEX</CODE ></A >, <A HREF="#cv-BIBTEXCOM" ><CODE CLASS="envar" >$BIBTEXCOM</CODE ></A >, <A HREF="#cv-BIBTEXFLAGS" ><CODE CLASS="envar" >$BIBTEXFLAGS</CODE ></A >, <A HREF="#cv-LATEX" ><CODE CLASS="envar" >$LATEX</CODE ></A >, <A HREF="#cv-LATEXCOM" ><CODE CLASS="envar" >$LATEXCOM</CODE ></A >, <A HREF="#cv-LATEXFLAGS" ><CODE CLASS="envar" >$LATEXFLAGS</CODE ></A >, <A HREF="#cv-MAKEINDEX" ><CODE CLASS="envar" >$MAKEINDEX</CODE ></A >, <A HREF="#cv-MAKEINDEXCOM" ><CODE CLASS="envar" >$MAKEINDEXCOM</CODE ></A >, <A HREF="#cv-MAKEINDEXFLAGS" ><CODE CLASS="envar" >$MAKEINDEXFLAGS</CODE ></A >, <A HREF="#cv-TEX" ><CODE CLASS="envar" >$TEX</CODE ></A >, <A HREF="#cv-TEXCOM" ><CODE CLASS="envar" >$TEXCOM</CODE ></A >, <A HREF="#cv-TEXFLAGS" ><CODE CLASS="envar" >$TEXFLAGS</CODE ></A >. </P ><P > Uses: <A HREF="#cv-BIBTEXCOMSTR" ><CODE CLASS="envar" >$BIBTEXCOMSTR</CODE ></A >, <A HREF="#cv-LATEXCOMSTR" ><CODE CLASS="envar" >$LATEXCOMSTR</CODE ></A >, <A HREF="#cv-MAKEINDEXCOMSTR" ><CODE CLASS="envar" >$MAKEINDEXCOMSTR</CODE ></A >, <A HREF="#cv-TEXCOMSTR" ><CODE CLASS="envar" >$TEXCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-tlib" ></A ><TT CLASS="literal" >tlib</TT ></DT ><DD ><P > Sets construction variables for the Borlan <SPAN CLASS="application" >tib</SPAN > library archiver. </P ><P > Sets: <A HREF="#cv-AR" ><CODE CLASS="envar" >$AR</CODE ></A >, <A HREF="#cv-ARCOM" ><CODE CLASS="envar" >$ARCOM</CODE ></A >, <A HREF="#cv-ARFLAGS" ><CODE CLASS="envar" >$ARFLAGS</CODE ></A >, <A HREF="#cv-LIBPREFIX" ><CODE CLASS="envar" >$LIBPREFIX</CODE ></A >, <A HREF="#cv-LIBSUFFIX" ><CODE CLASS="envar" >$LIBSUFFIX</CODE ></A >. </P ><P > Uses: <A HREF="#cv-ARCOMSTR" ><CODE CLASS="envar" >$ARCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-yacc" ></A ><TT CLASS="literal" >yacc</TT ></DT ><DD ><P > Sets construction variables for the <SPAN CLASS="application" >yacc</SPAN > parse generator. </P ><P > Sets: <A HREF="#cv-YACC" ><CODE CLASS="envar" >$YACC</CODE ></A >, <A HREF="#cv-YACCCOM" ><CODE CLASS="envar" >$YACCCOM</CODE ></A >, <A HREF="#cv-YACCFLAGS" ><CODE CLASS="envar" >$YACCFLAGS</CODE ></A >, <A HREF="#cv-YACCHFILESUFFIX" ><CODE CLASS="envar" >$YACCHFILESUFFIX</CODE ></A >, <A HREF="#cv-YACCHXXFILESUFFIX" ><CODE CLASS="envar" >$YACCHXXFILESUFFIX</CODE ></A >, <A HREF="#cv-YACCVCGFILESUFFIX" ><CODE CLASS="envar" >$YACCVCGFILESUFFIX</CODE ></A >. </P ><P > Uses: <A HREF="#cv-YACCCOMSTR" ><CODE CLASS="envar" >$YACCCOMSTR</CODE ></A >. </P ></DD ><DT ><A NAME="t-zip" ></A ><TT CLASS="literal" >zip</TT ></DT ><DD ><P > Sets construction variables for the <SPAN CLASS="application" >zip</SPAN > archiver. </P ><P > Sets: <A HREF="#cv-ZIP" ><CODE CLASS="envar" >$ZIP</CODE ></A >, <A HREF="#cv-ZIPCOM" ><CODE CLASS="envar" >$ZIPCOM</CODE ></A >, <A HREF="#cv-ZIPCOMPRESSION" ><CODE CLASS="envar" >$ZIPCOMPRESSION</CODE ></A >, <A HREF="#cv-ZIPFLAGS" ><CODE CLASS="envar" >$ZIPFLAGS</CODE ></A >, <A HREF="#cv-ZIPSUFFIX" ><CODE CLASS="envar" >$ZIPSUFFIX</CODE ></A >. </P ><P > Uses: <A HREF="#cv-ZIPCOMSTR" ><CODE CLASS="envar" >$ZIPCOMSTR</CODE ></A >. </P ></DD ></DL ></DIV ></DIV ><DIV CLASS="appendix" ><HR><H1 ><A NAME="app-tasks" ></A >Appendix D. Handling Common Tasks</H1 ><P > There is a common set of simple tasks that many build configurations rely on as they become more complex. Most build tools have special purpose constructs for performing these tasks, but since <TT CLASS="filename" >SConscript</TT > files are <SPAN CLASS="application" >Python</SPAN > scripts, you can use more flexible built-in <SPAN CLASS="application" >Python</SPAN > services to perform these tasks. This appendix lists a number of these tasks and how to implement them in <SPAN CLASS="application" >Python</SPAN >. </P ><DIV CLASS="example" ><A NAME="AEN10745" ></A ><P ><B >Example D-1. Wildcard globbing to create a list of filenames</B ></P ><PRE CLASS="programlisting" > import glob files = glob.glob(wildcard) </PRE ></DIV ><DIV CLASS="example" ><A NAME="AEN10748" ></A ><P ><B >Example D-2. Filename extension substitution</B ></P ><PRE CLASS="programlisting" > import os.path filename = os.path.splitext(filename)[0]+extension </PRE ></DIV ><DIV CLASS="example" ><A NAME="AEN10751" ></A ><P ><B >Example D-3. Appending a path prefix to a list of filenames</B ></P ><PRE CLASS="programlisting" > import os.path filenames = [os.path.join(prefix, x) for x in filenames] </PRE ><P >or in Python 1.5.2:</P ><PRE CLASS="programlisting" > import os.path new_filenames = [] for x in filenames: new_filenames.append(os.path.join(prefix, x)) </PRE ></DIV ><DIV CLASS="example" ><A NAME="AEN10756" ></A ><P ><B >Example D-4. Substituting a path prefix with another one</B ></P ><PRE CLASS="programlisting" > if filename.find(old_prefix) == 0: filename = filename.replace(old_prefix, new_prefix) </PRE ><P >or in Python 1.5.2:</P ><PRE CLASS="programlisting" > import string if string.find(filename, old_prefix) == 0: filename = string.replace(filename, old_prefix, new_prefix) </PRE ></DIV ><DIV CLASS="example" ><A NAME="AEN10761" ></A ><P ><B >Example D-5. Filtering a filename list to exclude/retain only a specific set of extensions</B ></P ><PRE CLASS="programlisting" > import os.path filenames = [x for x in filenames if os.path.splitext(x)[1] in extensions] </PRE ><P >or in Python 1.5.2:</P ><PRE CLASS="programlisting" > import os.path new_filenames = [] for x in filenames: if os.path.splitext(x)[1] in extensions: new_filenames.append(x) </PRE ></DIV ><DIV CLASS="example" ><A NAME="AEN10766" ></A ><P ><B >Example D-6. The "backtick function": run a shell command and capture the output</B ></P ><PRE CLASS="programlisting" >import os output = os.popen(command).read() </PRE ></DIV ></DIV ></DIV ><H3 CLASS="FOOTNOTES" >Notes</H3 ><TABLE BORDER="0" CLASS="FOOTNOTES" WIDTH="100%" ><TR ><TD ALIGN="LEFT" VALIGN="TOP" WIDTH="5%" ><A NAME="FTN.AEN380" HREF="#AEN380" ><SPAN CLASS="footnote" >[1]</SPAN ></A ></TD ><TD ALIGN="LEFT" VALIGN="TOP" WIDTH="95%" ><P >In programming parlance, the <TT CLASS="filename" >SConstruct</TT > file is <SPAN CLASS="emphasis" ><I CLASS="emphasis" >declarative</I ></SPAN >, meaning you tell <SPAN CLASS="application" >SCons</SPAN > what you want done and let it figure out the order in which to do it, rather than strictly <SPAN CLASS="emphasis" ><I CLASS="emphasis" >imperative</I ></SPAN >, where you specify explicitly the order in which to do things. </P ></TD ></TR ><TR ><TD ALIGN="LEFT" VALIGN="TOP" WIDTH="5%" ><A NAME="FTN.AEN1019" HREF="#AEN1019" ><SPAN CLASS="footnote" >[2]</SPAN ></A ></TD ><TD ALIGN="LEFT" VALIGN="TOP" WIDTH="95%" ><P > This easily-overlooked distinction between how <SPAN CLASS="application" >SCons</SPAN > decides if the target itself must be rebuilt and how the target is then used to decide if a different target must be rebuilt is one of the confusing things that has led to the <CODE CLASS="function" >TargetSignatures</CODE > and <CODE CLASS="function" >SourceSignatures</CODE > functions being replaced by the simpler <CODE CLASS="function" >Decider</CODE > function. </P ></TD ></TR ><TR ><TD ALIGN="LEFT" VALIGN="TOP" WIDTH="5%" ><A NAME="FTN.AEN2335" HREF="#AEN2335" ><SPAN CLASS="footnote" >[3]</SPAN ></A ></TD ><TD ALIGN="LEFT" VALIGN="TOP" WIDTH="95%" ><P > The <CODE CLASS="function" >AddOption</CODE > function is, in fact, implemented using a subclass of the <CODE CLASS="classname" >optparse.OptionParser</CODE >. </P ></TD ></TR ><TR ><TD ALIGN="LEFT" VALIGN="TOP" WIDTH="5%" ><A NAME="FTN.AEN2910" HREF="#AEN2910" ><SPAN CLASS="footnote" >[4]</SPAN ></A ></TD ><TD ALIGN="LEFT" VALIGN="TOP" WIDTH="95%" ><P > Unfortunately, in the early days of SCons design, we used the name <CODE CLASS="function" >Copy</CODE > for the function that returns a copy of the environment, otherwise that would be the logical choice for a Builder that copies a file or directory tree to a target location. </P ></TD ></TR ><TR ><TD ALIGN="LEFT" VALIGN="TOP" WIDTH="5%" ><A NAME="FTN.AEN4110" HREF="#AEN4110" ><SPAN CLASS="footnote" >[5]</SPAN ></A ></TD ><TD ALIGN="LEFT" VALIGN="TOP" WIDTH="95%" ><P > Actually, the MD5 signature is used as the name of the file in the shared cache directory in which the contents are stored. </P ></TD ></TR ></TABLE ></BODY ></HTML >